DEPARTMENTAL PROCEDURE	AOC Science Section: Standard Operating Procedure
PROCEDURE TITLE: GPS Dropwindsonde processing using the ASPEN software system.	SUBJECT MATTER EXPERT: Richard Henning
Effective Date:	Number: SCISEC
Revision: N/A	Originator: Richard Henning

Standard Operating Procedure for

- **1.0 TASK:** Standardize AOC procedures for creating WMO TEMPDROP messages and other sounding analysis products using the ASPEN software package.
- **2.0 Purpose/Background:** GPS Dropwindsondes (also called dropsondes or simply referred to as sondes) transmit vertical profiles of temperature, humidity, pressure, geopotential height, wind speed and wind direction via UHF radio to the AVAPS pallet onboard the aircraft from which it was launched. The AVAPS II dropsonde, as well as the AVAPS receiver and data processing system produced by Vaisala Corporation, are standard equipment across most US aircraft reconnaissance platforms: the NOAA AOC WP-3D and G-IV, 53rd WRS WC-130J, NASA DC-8 and NCAR G-V. A smaller AVAPS III sonde (also manufactured by Vaisala) is used by the NASA Global Hawk and ER-2. All dropsonde data collected by these platforms is processed by the onboard AVAPS system which outputs a raw D file (in a standard format) for each drop.

The D file is a tabular text file containing raw collected values for each parameter measured. For many years, Editsonde, a software package developed by HRD, was used on AOC aircraft to ingest the raw D file and generate the Quality Controlled WMO TEMPDROP message which would then be transmitted via SATCOM to users on the ground. ASPEN was a software package developed for the 53rd WRS by NCAR for the same purpose. During the past decade, NCAR developed a unified version of ASPEN that included all the functionality of Editsonde which could be used across all reconnaissance platforms.

3.0 Requirement: Using the ASPEN software package, the operator must be able to take a D file and create a valid WMO TEMPDROP message and be familiar with a variety of other ASPEN output products such as skew T log P plots and high resolution tabular files used by researchers.

4.0 Definitions/Abbreviations:

AAMPS	Airborne Atmospheric Measurement and Profiling System
ASPEN	Atmospheric Sounding Processing Environment
AVAPS	Airborne Vertical Atmospheric Profiling System
DROPSONDE	Shortened name for GPS Dropwindsonde
FD	Flight Director
HRD	Hurricane Research Division (part of AOML in Miami, FL)
LAN	Local Area Network
NCAR	National Center for Atmospheric Research (Boulder, CO)
OFCM	Office of the Federal Coordinator for Meteorological Services / Research
PTH	Pressure, temperature & humidity data (sometimes referred to as "PTU")
SATCOM	Satellite Communications System
SEB	Science and Engineering Branch of AOC
SONDE	Shortened name for GPS Dropwindsonde
WMM	Weather Message Module
WSR	Pacific Winter Storm project (ie: WSR11 is the Winter Storm 2011 project)
WMO	World Meteorological Organization

- **5.0 References/Resources:** This document as well as the Vaisala AVAPS User's Manual, NCAR ASPEN User's Manual and the OFCM Federal Meteorological Handbook #3 describing Rawinsonde and Pibal Observations
- 6.0 Scope/Responsibility: The AOC Flight Director (FD).
- **7.0 Procedures:** The following provides a step-by-step procedure to process a raw dropsonde D file while flying onboard AOC P-3 or G-IV aircraft and generate a WMO TEMP DROP message for transmission, as well as creating and understanding other output products of ASPEN. A separate instruction policy discusses how to process sondes from a ground station. The primary difference between the two lies in how to obtain the D file from an aircraft flying a mission while on the ground. Once the D file is ingested into ASPEN, the methodology for processing it is the same whether on the ground or on the aircraft.

7.1 Using REMOTE AVAPS to follow the progress of a sonde

Dropsondes are launched by AOC Science and Engineering Branch (SEB) technicians using launch tubes located near the back of the cabin. On the P-3, the dropsonde launch tube is located across from the Main Cabin Door immediately behind Station 5. At this station you will find the receiver for the transmitted UHF signals coming up from the falling sonde. A computer at Station 5 ingests GPS position data 4 times per second. Using changes to position and Doppler effects in the GPS signal, an instantaneous calculation of wind direction and speed is derived every 0.25 seconds. Pressure, temperature and humidity data are transmitted and processed twice every second as the sonde falls, so a line of PTH data (also sometimes called PTU data) is created every 0.5 second. The AVAPS computer compiles the D file from these data sets.

Similarly, the sonde launch tube is in the rear of the cabin in the G-IV directly behind Station R5. The G-IV has two functionally identical AVAPS systems to receive and process the raw dropsonde data signal located at R5 and L5.

It is the job of the AVAPS technician to watch the incoming data and note any readily apparent abnormalities to the FD. Upon sonde splashdown, a loss of data is apparent to the AVAPS Operator. At that point, the technician "kills" the channel in which the data are being received. There are 8 AVAPS channels available to the operator (to allow for multiple sondes in the air transmitting data simultaneously). Once a sonde run is terminated by the operator the AVAPS computer automatically compiles the data into the D file. The FD also has the ability to follow the progress of falling sondes using the Remote AVAPS program loaded at the FD station. The program allows the FD to follow multiple sondes in the air simultaneously using different AVAPS channels.

			Re	mote_A	VAPS_	8-ch	mair	ı. Vİ	9					
•														
8CH A	VAPS REMOT	TE DATA COL	LECTION	Setup	CH 1	CH 2	СН	з Сн	1 СН5	СНе	СН7	СН8	5-8	
	VER: 6 A	ug 2012 JAS												
Channel 1	Channel 2	Channel 3	Channel 4											
13.492 GEO_ALT(M) 23.09 PS_(MB) 998.74 TEMP(C) 1.42 RH1_(%) 96.64 W SPEED(M/S) 19.19 WDIR(DEG) 286.14 FALL RATE(M/S) -7.97 STATUS NOTIVE SERIAL NMBR 112615046 LAUNCH TIME 1300203 02	13.428 GEO ALTI(M: 21.98 PS (MB) 1009.44 TEMP (C) -0.31 RH1 (%) 72.50 RH2 (%) 72.50 WSPEED (M/S) 19.89 WIND DIR (DEG) 279.94 FALL RATE (M/S) FOLST ACTIVE SERIAL NUM 112615011 LAUNCH TIME 130203 02	0.26067 GEO ALT (M) 99999.00 PS (MB) 952.03 TEMP (C) 24.64 RH1 (%) 5.38 RH2 (%) 5.38 W SPEED (M/S) 98.32 WND DIR (DEG) 59.60 FALL RATE (M/S) -0.33 STATUS NOT ACTIVE SERIAL NUM 112615058 LAUNCH TIME 130203_021	0.26002 6E0 ALT (M) 99999.00 PS (MB) 951.41 TEMP (C) 24.55 RH1 (%) 4.00 RH2 (%) 4.00 RH2 (%) 98.48 WND DIR (DEG 59.75 FALL RATE (M/S) 98.48 WND DIR (DEG 59.75 FALL RATE (M/S) -0.14 STATUS NOT ACT VE SERIAL NUM 112455104 LAUNCH TIME 130203 02 ²		8000 7500 6500 5500 5000 (1) 901111 4500 4000 2500 2500 2500 1500 1500 500 0						60 70			
1457	4325	747	505	w	Vel (kts)	0	10	20 30	40	50	60 70	80	90	100
				WI	лг (Deg) emp (C)	0 29 70	5 50 -60	75 100 -50 -40	125 150	-20	-10 0	275 300	325	360
Capture Histor	y .				RH0(%)	0	10	20 30	40	50	60 70	80	90	100
D20130203_0 D20130203_0 D20130203_0 D20130203_0	003609.1 004538.2 014023.4		STOP											

FIGURE 1: Example Remote AVAPS screen depicting a sonde profile on Channel #2

As the sonde is released, traces for wind velocity (magenta), wind direction (red), temperature (green) and relative humidity (blue) are plotted in real time. It takes several seconds after launch for data from the sonde to stabilize (as the sensors adapt from the environment inside the aircraft cabin to the atmosphere outside). During this brief interval these data appear as scattered points of each color corresponding to each data type, then upon stabilization, a coherent line begins to appear. Another interval of separate points may also appear in the last few seconds just prior to splash with some drops.

The traces of plotted data for a particular channel are viewed by selecting that channel using the tabs across the top of the right portion of the screen. On the left, alphanumeric

data for each channel are displayed. To see alphanumeric data for Channels 5 through 8, click on the 5-8 tab at the top on the right side of the display pane.

Many common sonde problems are easily recognized by following the progress of a drop using Remote AVAPS. The most common abnormality is known as a fast fall. This occurs when a parachute fails to open or becomes detached after deployment. The result is a sonde tumbles as it falls much more quickly than designed. A sonde released from the P-3 at common working altitudes between 7,000 and 12,000 feet will typically begin falling at about 10 to 12 meters per second once the parachute is deployed and it stabilizes. Sondes released from the G-IV are typically deployed at much higher altitudes (usually above 40,000 feet). Due to the air density being so low at these heights, even with a proper parachute deployment, the sonde will begin its fall at about 20 meters per second (twice the vertical velocity seen with P-3 drops). By the time the sonde reaches 850 mb it should slow to a little over 10 m/s. The Fall Rate is one parameter constantly updating in the alphanumeric data display.

When there is a parachute failure the sonde will display extreme fluctuations in fall rate as well as fall at rates of up to 35 m/s when dropped from the G-IV (over 20 m/s from the P-3). Fast falls make it impossible to maintain a good signal lock with the GPS satellites. The result is a telltale scattering of points on the Remote AVAPS plot of Wind Speed and Wind Direction from launch to splash (as seen below). The resulting sounding will contain suspect wind and PTH data and should not be used to create a WMO TEMPDROP message. In most cases a fast fall is readily apparent after launch and a backup sonde should be deployed. Sometimes a fast fall chute will eventually inflate and stabilize at a lower altitude. On rare occasions, a good chute will break at some point well into its descent and the sonde will become a fast fall for the remainder of the profile.

FIGURE 2: Remote AVAPS screen depiction of a Fast Fall. Note the scattering of the data points for wind speed and direction rather than coherent, contiguous lines.

Occasionally, there are faulty parachutes that only partially inflate. While this is usually sufficient to keep the sonde upright and retard the fall rate enough to obtain good PTH data, the wind data will be noisier than usual. An example of a partial sonde failure from the G-IV is shown below. It is up to the discretion of the FD to determine whether or not to use the resulting sounding.

FIGURE 3: Example of a partial parachute failure. The traces of wind speed and direction are "noisier" than normal and momentarily non-contiguous in some levels.

Another common sonde problem easily noticed on Remote AVAPS is an Early Launch Detect (ELD). This will cause the AVAPS system to begin compiling sounding data while the sonde is still in the launch tube inside the aircraft. Remote AVAPS displays this problem as a random scattering of data points corresponding to the cabin altitude of the aircraft (typically about 810 mb for the G-IV). The cabin altitude of the P-3 varies depending on the pressurization level but can be read off the AAMPS Screen 800. Another sign of an ELD using Remote AVAPS is that the alphanumeric data will show a STATUS of ACTIVE (rather than NOT ACTIVE) on the channel being used for an imminent launch. The LAUNCH TIME also will show the time of the erroneous launch detect rather than the time of the actual sonde deployment.

If not detected prior to launch, the D file that results from an ELD can still be used to compile a valid and complete sounding using ASPEN. However, some manual editing of the D file is needed before it can be properly processed by ASPEN. The LAU Line (launch line) of the D file (explained in Section 7.4 on Page 8) must be edited to reflect the actual launch time and latitude / longitude position rather than the inadvertent earlier time and position. Also, all the lines of the D file generated between the inadvertent launch detect and the actual sonde release time need to be deleted from the file before it is processed by ASPEN.

7.2 Obtain D files from the AVAPS computer via the aircraft LAN

The AVAPS computer is networked to the aircraft LAN and data folders on it may be accessed by the FD. Prior to dropping sondes for a mission, the FD should ensure they have located the proper pathway to the folder on the AVAPS computer where D files will collect after each drop.

The FD will locate the D file in the AVAPS computer folder labeled with the flight's mission ID and copy it to a folder that they created on their local hard drive. Many types of files are created on the AVAPS folder for each dropsonde. Most of these are not used by the FD to generate a sounding with ASPEN (however, they are useful to engineers in monitoring proper AVAPS performance and need to be downloaded for archiving at the end of each mission). Only the D file beginning with the full flight ID and ending with the appended letter P is needed for ASPEN. The P designation denotes only a small portion of the data collected while the sonde was in the launch tube awaiting deployment is included in the D file (resulting in a file size roughly half that of the D file not ending with the letter P). In the example below this is file D20130208_143606_P.1. The P.1 denotes that Channel #1 was used for this sonde.

FIGURE 4: The AVAPS Station can be accessed from the FD Station as a remote computer on the aircraft's LAN. In the directory of the AVAPS computer, locate the folder which includes all the files generated each time a sonde is terminated. The only files needed for ASPEN processing are the D files. Copy the D files off their location on the network to a folder you have created on your local hard drive.

7.3 Load the D file into ASPEN

Open the ASPEN executable file (a shortcut is found on the FD computer Desktop). As the program loads, a standard select pane will open to the folder the program has been pointed towards or the last folder used by the program on an earlier flight. Like any file select pane, you can navigate to the proper folder using the "Look in" dropdown menu:

Aspen - Open Sounding File Image: Colspan="2">Open Look in: Diffes Image: Colspan="2">Image: Colspan="2" Colspa="2" Colspa="2" Colspan="2" Colspan="2" Colspan="2" Col
Look in: D files D C0120825_060157.P D D0120825_093336_P.4 My Recent Documents D D0120825_06145.P D D0120825_093336_P.4 D D0120825_093336_P.4 D D0120825_063822.P D D0120825_09517.P D D0120825_09517.P D D0120825_010637_P D D0120825_07354.P D D0120825_010507.P D D0120825_010507.P D D0120825_010637_P D D0120825_07354.P D D0120825_010507.P D D0120825_010504.P D D0120825_010504.P D D0120825_073131.P D D0120825_01515.P.4 D D0120825_110515.P.4 D D0120825_110515.P.4 D D0120825_075630.P D D0120825_01313.P D D0120825_110515.P.4 D D0120825_110515.P.4 D D0120825_082617.P D D0120825_120649.P D D0120825_121847.P D D0120825_123719.P D D0120825_09533.P D D0120825_123719.P D D0120825_123719.P D D0120825_123719.P D D0120825_09547.P D D0120825_125027.P D D0120825_125027.P D D0120825_125027.P </th
Wy Recent Documents D20120825_060157_P D20120825_062740_P D20120825_093336_P.4 D20120825_06322_P D20120825_095517_P D20120825_06322_P D20120825_100637_P D20120825_07354_P D20120825_100537_P D20120825_07354_P D20120825_105504_P D20120825_07354_P D20120825_11550_P D20120825_073131_P D20120825_11550_P D20120825_07630_P D20120825_113403_P D20120825_08944_P.4 D20120825_11570_P D20120825_08944_P.4 D20120825_12504P D20120825_08944_P.4 D20120825_11570_P D20120825_08944_P.4 D20120825_120649_P D20120825_09533_P D20120825_125027_P D20120825_09533_P D20120825_125027_P D20120825_09533_P D20120825_125027_P D20120825_092547_P D20120825_125027_P
File name: Open My Network Files of type: AVAPS D files (D*.?) Cancel
My Network Files of type: AVAPS D files (D*.?) Cancel
/

FIGURE 5: When ASPEN is opened a file select pane will appear.

After selecting the D file you plan to process, ASPEN will automatically create a variety of products including a WMO TEMPDROP message within a few seconds. It does so by using algorithms to quality check the sounding data by applying filters to disregard data that do not meet pre-established criteria for validity. HOWEVER, it is vital to stress that the TEMPDROP message is not yet ready to be sent to the AOC customer. Careful human analysis is necessary to ensure ASPEN has worked properly. There are many problematic sondes that contain suspect data. ASPEN catches MOST BUT NOT ALL problems. While it is a tool to help process many sondes on a busy flight, it is not sufficiently advanced to replace a trained meteorologist.

7.4 Understanding the elements comprising a D File

There are many columns of data generated during compilation of a D file by the AVAPS computer. Each column is explained fully in Appendix B. There is a row of data generated each 0.25 seconds. As seen in Figure 6 shown below, not each data type specified in every column is populated at this rate. Only GPS measurements needed for calculation of the winds and fall rate (also called vertical velocity) are measured at this 4 Hz rate. Columns of pressure, temperature and humidity data are populated at a 2 Hz rate (every 0.50 seconds). Therefore many of the rows are partially filled out with 999s denoting no data. After the sonde splashes, there will be lines showing all 999s from when the sonde splashes until the run is terminated by the AVAPS operator.

AVAPS-TO1	STA	111745195	120825	055625.41															
AVAPS-TO1	COM		UTC	UTC	Air	Air	Rel	Wind	Wind	Vert	GPS	GPS	Geopoten	GPS	Sonde	Sonde	GPS	Wind	GPS
AVAPS-TO1	COM	Sonde	Date	Time	Press	Temp	Humid	Dir	Spd	Veloc	Longitude	Latitude	Altitude	Und	RH1	RH2	Snd	Error	Altitude
AVAPS-TO1	COM	ID	yymmdd	hhmmss.ss	(mb)	(degC)	(*)	(deg)	(m/s)	(m/s)	(deg)	(deg)	(m)	Sat	(*)	(*)	Sat	(m/s)	(m)
AVAPS-TO1	COM																		
AVAPS-TO1	LAU	111745195	120825	060157.25															
AVAPS-DO1	A00	111745195	120825	060157.00	179.01	-59.11	40.37	222.01	25.95	0.40	-79.508200	27.113400	13070.80	0	40.37	40.37	0	0.00	13109.80
AVAPS-DO1	P00	111745195	120825	060147.25	806.18	17.78	11.87	280.08	237.73	-0.10	-79.529817	27.117149	99999.00	9	10.96	11.87	9	0.51	13076.22
AVAPS-DO1	P10	111745195	120825	060147.50	9999.00	99.00	999.00	280.12	237.63	-0.08	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.52	99999.00
AVAPS-DO1	POO	111745195	120825	060147.75	806.15	17.75	11.89	280.17	237.62	-0.09	-79.528640	27.116961	99999.00	9	10.95	11.89	9	0.52	13076.24
AVAPS-DO1	P10	111745195	120825	060148.00	9999.00	99.00	999.00	280.23	237.70	-0.14	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.52	99999.00
AVAPS-DO1	POO	111745195	120825	060148.25	806.15	17.76	11.90	280.28	237.68	-0.17	-79.527463	27.116771	99999.00	9	10.97	11.90	9	0.52	13076.24
AVAPS-DO1	P10	111745195	120825	060148.50	9999.00	99.00	999.00	280.32	237.68	-0.17	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.52	99999.00
AVAPS-DO1	POO	111745195	120825	060148.75	806.18	17.74	11.91	280.36	237.67	-0.13	-79.526287	27.116579	99999.00	9	10.96	11.91	9	0.50	13076.24
AVAPS-DO1	P10	111745195	120825	060149.00	9999.00	99.00	999.00	280.45	237.70	-0.26	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.48	99999.00
AVAPS-DO1	P00	111745195	120825	060149.25	806.15	17.75	11.88	280.45	237.66	-0.20	-79.525111	27.116386	99999.00	9	10.98	11.88	9	0.48	13076.28
AVAPS-DO1	P10	111745195	120825	060149.50	9999.00	99.00	999.00	280.50	237.73	-0.11	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.49	99999.00
AVAPS-DO1	POO	111745195	120825	060149.75	806.23	17.76	11.94	280.53	237.66	-0.05	-79.523935	27.116191	99999.00	9	10.98	11.94	9	0.56	13076.28
AVAPS-DO1	P10	111745195	120825	060150.00	9999.00	99.00	999.00	280.60	237.61	-0.04	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.50	99999.00
AVAPS-DO1	POO	111745195	120825	060150.25	806.26	17.75	11.90	280.67	237.68	-0.06	-79.522760	27.115994	99999.00	9	11.00	11.90	9	0.48	13076.29
AVAPS-DO1	P10	111745195	120825	060150.50	9999.00	99.00	999.00	280.70	237.71	-0.04	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.50	99999.00
AVAPS-DO1	POO	111745195	120825	060150.75	806.27	17.75	11.87	280.74	237.64	-0.00	-79.521585	27.115795	99999.00	9	10.96	11.87	9	0.50	13076.30
AVAPS-DO1	P10	111745195	120825	060151.00	9999.00	99.00	999.00	280.80	237.62	0.01	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.54	99999.00
AVAPS-DO1	POO	111745195	120825	060151.25	806.11	17.74	11.88	280.83	237.65	0.14	-79.520410	27.115595	99999.00	9	10.95	11.88	9	0.58	13076.53
AVAPS-DO1	P10	111745195	120825	060151.50	9999.00	99.00	999.00	280.87	237.62	0.24	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.54	99999.00
AVAPS-DO1	POO	111745195	120825	060151.75	806.04	17.75	11.89	280.93	237.56	0.26	-79.519236	27.115393	99999.00	9	10.97	11.89	9	0.51	13076.71
AVAPS-DO1	P10	111745195	120825	060152.00	9999.00	99.00	999.00	281.02	237.65	0.03	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.50	99999.00
AVAPS-DO1	POO	111745195	120825	060152.25	806.12	17.74	11.89	281.06	237.68	0.09	-79.518062	27.115189	99999.00	9	10.96	11.89	9	0.49	13076.69
AVAPS-DO1	P10	111745195	120825	060152.50	9999.00	99.00	999.00	281.09	237.61	0.12	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.52	99999.00
AVAPS-DO1	POO	111745195	120825	060152.75	806.21	17.73	11.89	281.14	237.59	0.17	-79.516889	27.114982	99999.00	9	10.96	11.89	9	0.53	13076.77
AVAPS-DO1	P10	111745195	120825	060153.00	9999.00	99.00	999.00	281.17	237.50	0.24	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.53	99999.00
AVAPS-DO1	POO	111745195	120825	060153.25	806.14	17.74	11.85	281.23	237.51	0.30	-79.515717	27.114774	99999.00	9	10.93	11.85	9	0.52	13076.88
AVAPS-DO1	P10	111745195	120825	060153.50	9999.00	99.00	999.00	281.30	237.56	0.31	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.52	99999.00
AVAPS-DO1	POO	111745195	120825	060153.75	806.22	17.74	11.84	281.34	237.43	0.35	-79.514545	27.114563	99999.00	9	10.93	11.84	9	0.52	13076.97
AVAPS-DO1	P10	111745195	120825	060154.00	9999.00	99.00	999.00	281.37	237.48	0.42	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.51	99999.00
AVAPS-DO1	POO	111745195	120825	060154.25	806.18	17.74	11.80	281.43	237.45	0.50	-79.513373	27.114351	99999.00	9	10.94	11.80	9	0.52	13077.11
AVAPS-DO1	P10	111745195	120825	060154.50	9999.00	99.00	999.00	281.47	237.44	0.49	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.50	99999.00
AVAPS-DO1	P00	111745195	120825	060154.75	806.14	17.74	11.79	281.52	237.48	0.64	-79.512202	27.114137	99999.00	9	10.92	11.79	9	0.50	13077.42
AVAPS-DO1	P10	111745195	120825	060155.00	9999.00	99.00	999.00	281.59	237.42	0.66	999.000000	99.000000	99999.00	9	999.00	999.00	9	0.50	99999.00

FIGURE 6: A sample D File. Note the wind speed and direction are 4 Hz data while the PTH data are 2 Hz. Since a line is generated for every 0.25 seconds, half of the lines will contain 99999s for missing PTH data.

The LAU line is highlighted below in red. It denotes the Launch Detect time:

AVAPS-T01	STA	111745195	120825	055625.41								
AVAPS-T01	COM		UTC	UTC	Air	Air	Rel	Wind	Wind	Vert	GPS	GPS
AVAPS-T01	COM	Sonde	Date	Time	Press	Temp	Humid	Dir	Spd	Veloc	Longitude	Latitude
AVAPS-T01	COM	ID	yymmdd	hhmmss.ss	(mb)	(degC)	(%)	(deg)	(m/s)	(m/s)	(deg)	(deg)
AVAPS-T01	COM											
AVAPS-T01	LAU	111745195	120825	060157.25								
AVAPS-D01	A00	111745195	120825	060157.00	179.01	-59.11	40.37	222.01	25.95	0.40	-79.508200	27.113400
AVAPS-D01	POO	111745195	120825	060147.25	806.18	17.78	11.87	280.08	237.73	-0.10	-79.529817	27.117149
AVAPS-D01	P10	111745195	120825	060147.50	9999.00	99.00	999.00	280.12	237.63	-0.08	999.000000	99.000000
AVAPS-D01	POO	111745195	120825	060147.75	806.15	17.75	11.89	280.17	237.62	-0.09	-79.528640	27.116961
AVAPS-D01	P10	111745195	120825	060148.00	9999.00	99.00	999.00	280.23	237.70	-0.14	999.000000	99.000000
AVAPS-D01	POO	111745195	120825	060148.25	806.15	17.76	11.90	280.28	237.68	-0.17	-79.527463	27.116771
AVAPS-D01	P10	111745195	120825	060148.50	9999.00	99.00	999.00	280.32	237.68	-0.17	999.000000	99.000000
AVAPS-D01	POO	111745195	120825	060148.75	806.18	17.74	11.91	280.36	237.67	-0.13	-79.526287	27.116579
AVAPS-D01	P10	111745195	120825	060149.00	9999.00	99.00	999.00	280.45	237.70	-0.26	999.000000	99.000000
AVAPS-D01	POO	111745195	120825	060149.25	806.15	17.75	11.88	280.45	237.66	-0.20	-79.525111	27.116386

FIGURE 7: The LAU line denotes the time when the AVAPS system detects that the sonde has been deployed. It is supposed to be within the first second that the sonde leaves the aircraft.

In this example, the Launch Detect occurred at 06:01:57.25 UTC. AVAPS will then populate the next line with aircraft data from the previous 0.25 seconds (in this case from 06:01:57.00 UTC) as the **A00** line highlighted in Figure 8 below:

AVAPS-T01	STA	111745195	120825	055625.41								
AVAPS-T01	COM		UTC	UTC	Air	Air	Rel	Wind	Wind	Vert	GPS	GPS
AVAPS-T01	COM	Sonde	Date	Time	Press	Temp	Humid	Dir	Spd	Veloc	Longitude	Latitude
AVAPS-T01	COM	ID	yymmdd	hhmmss.ss	(mb)	(degC)	(%)	(deg)	(m/s)	(m/s)	(deg)	(deg)
AVAPS-T01	COM											
AVAPS-T01	LAU	111745195	120825	060157.25								
AVAPS-D01	A00	111745195	120825	060157.00	179.01	-59.11	40.37	222.01	25.95	0.40	-79.508200	27.113400
AVAPS-D01	POO	111745195	120825	060147.25	806.18	17.78	11.87	280.08	237.73	-0.10	-79.529817	27.117149
AVAPS-D01	P10	111745195	120825	060147.50	9999.00	99.00	999.00	280.12	237.63	-0.08	999.000000	99.000000
AVAPS-D01	POO	111745195	120825	060147.75	806.15	17.75	11.89	280.17	237.62	-0.09	-79.528640	27.116961
AVAPS-D01	P10	111745195	120825	060148.00	9999.00	99.00	999.00	280.23	237.70	-0.14	999.000000	99.000000
AVAPS-D01	POO	111745195	120825	060148.25	806.15	17.76	11.90	280.28	237.68	-0.17	-79.527463	27.116771
AVAPS-D01	P10	111745195	120825	060148.50	9999.00	99.00	999.00	280.32	237.68	-0.17	999.000000	99.000000
AVAPS-D01	P00	111745195	120825	060148.75	806.18	17.74	11.91	280.36	237.67	-0.13	-79.526287	27.116579
AVAPS-D01	P10	111745195	120825	060149.00	9999.00	99.00	999.00	280.45	237.70	-0.26	999.000000	99.000000
AVAPS-D01	P00	111745195	120825	060149.25	806.15	17.75	11.88	280.45	237.66	-0.20	-79.525111	27.116386
AVAPS-D01	P10	111745195	120825	060149.50	9999.00	99.00	999.00	280.50	237.73	-0.11	999.000000	99.000000
AVAPS-D01	P00	111745195	120825	060149.75	806.23	17.76	11.94	280.53	237.66	-0.05	-79.523935	27.116191
AVAPS-D01	P10	111745195	120825	060150.00	9999.00	99.00	999.00	280.60	237.61	-0.04	999.000000	99.000000
AVAPS-D01	POO	111745195	120825	060150.25	806.26	17.75	11.90	280.67	237.68	-0.06	-79.522760	27.115994

FIGURE 8: The A00 line is populated with flight level (FL) aircraft data from AAMPS

None of the data parameters shown on the A00 line come from the sonde. They come from the AAMPS data system of the launch aircraft. Below the A00 line are several lines of data from before the launch detect. You will note the Air Pressure column for these rows corresponds with the cabin pressure of the G-IV as the sonde sat in the launch tube.

It takes several seconds for the sonde's sensors to stabilize and begin transmitting valid data. The beginning of a D file is shown in Figure 9 below. Note the rows containing data from 10 seconds prior to Launch Detect at 06:01:57.25 UTC beginning with the line highlighted in red. To save space in the example below, the rows of cabin data from 06:01:48.50 to 06:01:55.75 UTC were omitted. The first line of data from the sonde in the air outside the aircraft is highlighted in magenta.

AVAPS-T01	STA	111745195	120825	055625.41								
AVAPS-T01	COM		UTC	UTC	Air	Air	Rel	Wind	Wind	Vert	GPS	GPS
AVAPS-T01	COM	Sonde	Date	Time	Press	Temp	Humid	Dir	Spd	Veloc	Longitude	Latitude
AVAPS-T01	COM	ID	yymmdd	hhmmss.ss	(mb)	(degC)	(%)	(deg)	(m/s)	(m/s)	(deg)	(deg)
AVAPS-T01	COM											
AVAPS-T01	LAU	111745195	120825	060157.25								
AVAPS-D01	A00	111745195	120825	060157.00	179.01	-59.11	40.37	222.01	25.95	0.40	-79.508200	27.113400
AVAPS-D01	P00	111745195	120825	060147.25	806.18	17.78	11.87	280.08	237.73	-0.10	-79.529817	27.117149
AVAPS-D01	P10	111745195	120825	060147.50	9999.00	99.00	999.00	280.12	237.63	-0.08	999.000000	99.000000
AVAPS-D01	POO	111745195	120825	060147.75	806.15	17.75	11.89	280.17	237.62	-0.09	-79.528640	27.116961
AVAPS-D01	P10	111745195	120825	060148.00	9999.00	99.00	999.00	280.23	237.70	-0.14	999.000000	99.000000
AVAPS-D01	POO	111745195	120825	060148.25	806.15	17.76	11.90	280.28	237.68	-0.17	-79.527463	27.116771
AVAPS-D01	P10	111745195	120825	060156.00	9999.00	99.00	999.00	281.75	237.33	0.78	999.000000	99.000000
AVAPS-D01	POO	111745195	120825	060156.25	806.22	17.73	11.81	281.81	237.31	0.72	-79.508691	27.113487
AVAPS-D01	P10	111745195	120825	060156.50	9999.00	99.00	999.00	281.85	237.29	0.64	999.000000	99.000000
AVAPS-D01	P01	111745195	120825	060156.75	806.14	17.73	11.79	999.00	999.00	99.00	999.000000	99.000000
AVAPS-D01	P11	111745195	120825	060157.00	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000
AVAPS-D01	\$00	111745195	120825	060157.25	152.04	17.72	11.60	281.96	237.38	0.64	-79.506353	27.113046
AVAPS-D01	S10	111745195	120825	060157.50	9999.00	99.00	999.00	282.13	237.15	0.72	999.000000	99.000000
AVAPS-D01	S11	111745195	120825	060157.75	128.01	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000
AVAPS-D01	S11	111745195	120825	060158.00	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000
AVAPS-D01	S11	111745195	120825	060158.25	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000
AVAPS-D01	S11	111745195	120825	060158.50	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000
AVAPS-D01	S11	111745195	120825	060158.75	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000
AVAPS-D01	S00	111745195	120825	060159.00	180.62	-9.01	1.00	280.73	228.59	2.49	-79.502361	27.112279
AVAPS-D01	S10	111745195	120825	060159.25	9999.00	99.00	999.00	280.23	228.31	3.08	999.000000	99.000000
AVAPS-D01	S00	111745195	120825	060159.50	180.93	-12.07	1.00	280.10	228.06	3.46	-79.501231	27.112105
AVAPS-D01	s10	111745195	120825	060159.75	9999.00	99.00	999.00	279.46	227.37	3.55	999.000000	99.000000
AVAPS-D01	S00	111745195	120825	060232.00	200.96	-54.96	6.96	209.53	28.06	-20.67	-79.498222	27.119444

FIGURE 9: The first line of data from the sonde outside the aircraft is highlighted above in magenta (at 06:01:57.25 UTC).

The first two Air Pressure readings of 152.04 mb and 128.01 mb are invalid, as are the temperatures of 17.72 and -9.01 deg C (both far too warm for a sonde launched from the G-IV). The first reliable Air Pressure reading was not made until 06:01:59.00 UTC (from the row highlighted in brown) with 180.62 mb being the first believable static pressure data (given the aircraft data in the A00 line showed an outside atmospheric pressure at launch of 179.01 mb). In Figure 9 on the previous page the lines from 06:02:00.00 to 06:02:31.75 UTC were also omitted to save space. It was not until the row of data at 06:02:32.00 UTC (shown as the row highlighted in blue (34.75 seconds) after Launch Detect)) that all the GPS wind and PTH data was stabilized and valid. Note how prior to this time, the sonde was still showing much of the forward velocity of the aircraft for a Wind Speed (227.37 m/s versus the actual wind speed of 28.06 m/s). Note also the Vertical Velocity (aka Fall Rate) of 20.67 m/s finally looks valid in the blue row along with the Air Temp of -54.96 deg C. Many sondes do not take this long for winds to stabilize. Generally, valid winds come in within about 10 seconds. It often does take this long for PTH data from the G-IV to stabilize given the extreme changes pressure, temperature and humidity from inside to outside the aircraft.

7.5 Initial analysis of a sounding in ASPEN

After ASPEN has completed its automated processing of a D file the Main screen shown below will appear. You will see a number of tabs across the top. Each screen in ASPEN has this set of tabs. These allow the user to navigate back and forth through the various screens. The yellow bar shows the date and time of the D file used to generate the sounding. In the case below D20120825 060157 denotes the sonde was launched at 06:01:57 UTC (also called z or zulu time) on August 25, 2012. The P.1 shows the sonde utilized AVAPS Channel 1. The next number...111745195...is the serial number of the sonde launched. The remaining information shows the season and Mission ID of the flight along with the aircraft from which it was deployed.

Reporter Ignore Override aunch Parameters: Pressure (mb) 179.0 Emperature (deg C) 59.1 RH (%) 40.4 Wind Speed (m/s) 25.9 Latitude (deg) 27.1134 Latitude (deg) 27.1134 Latitude (deg) 79.5082 Latitude (deg) 79.5082 Latitude (m) 13070.8 Keporter Latitude (m) 13070.8 Latitude (m) 13070.8 Keporter Reporter Clear Recompetition Recomp	Raw QC XYGraph	Skew-T 20120825	Levels V 060157	VMO Comm P.1 111745	Summary 195 Hurricane	2012, 20120825N1 Gulfstream G-IV SP, N49RF
aunch Parameters: Height Overrides Pressure (mb) 179.0 emperature (deg C) 59.1 RH (%) 40.4 Clear Wind Speed (m/s) 25.9 Latitude (deg) 27.1134 Longitude (deg) 79.5082 Altitude (m) 13070.8	nd of Drop Time (s)	Reported 943.50	Ignore	Override	Clear	RECOMPUTE Launch Time 06:01:57 2012-08-25
Pressure (mb) 179.0 Clear emperature (deg C) -59.1 Clear RH (%) 40.4 Clear Wind Speed (m/s) 25.9 Clear Vind Direction (deg) 222.0 Clear Latitude (deg) 27.1134 Clear Longitude (deg) 79.5082 Clear Altitude (m) 13070.8 Clear	aunch Parameters:					Height Overrides
	Pressure (mb) Temperature (deg C) RH (%) Wind Speed (m/s) Wind Direction (deg) Latitude (deg) Longitude (deg) Altitude (m)	179.0 -59.1 40.4 25.9 222.0 27.1134 79.5082 13070.8			Clear Clear Clear Clear Clear Clear Clear Clear	 ✓ Hit Surface? Set Heights Missing? Surface Altitude Unknown (Dropsonde over land) RH Channel for QC Use ✓ RH0 (AVAPS Selected) RH1 RH2 Dropsonde Height Integration Results Upward 13078.4 Launch Altitude (m) Downward O.6 Low Altitude (m)
	ropsonde Surface Para	meters				
opsonde Surface Parameters	Extrapolated		Override		Clear	
opsonde Surface Parameters Extrapolated Override Override Clear	Pres (mb) 1015.4	Reported	Pres (mb)			

Figure 10: ASPEN Main Screen

The Main Screen shows that by default, ASPEN assumes that the sonde made it all the way to the surface and splashed while still transmitting valid data. On the right side of the pane under Height Overrides note that the Hit Surface box should be checked, reflecting this assumption. ASPEN calculates surface pressure and geopotential heights by integrating from the bottom of the sounding upward. Therefore, it is crucial that the sonde data reaches the surface. If you know before processing a sonde that it terminated data collection at some point above the surface then there is no way to accurately calculate surface pressure or geopotential heights. You must uncheck Hit Surface and check the Set Heights Missing box. Then hit the RECOMPUTE button (any changes made to the Main screen settings require you to hit RECOMPUTE for those changes to be included in further calculations).

Sometimes during the processing of a drop using ASPEN you discover there were problems (such as the sonde data not extending to the surface). A quick way to tell something is wrong is by looking at the Dropsonde Height Integration Results. In Figure 10 on the previous page you see optimal results: The value for downward integration should be very small (in this case only 0.6 meters) and the upward integration should be close to the Altitude shown on the left side under Launch Parameters (in this case 13078.4 meters from the sonde upward integration versus 13070.8 meters from the aircraft data using the A00 Line of the D file).

In Figure 11 below, something is obviously wrong. In the example below, the sonde failed to transmit valid data in the last 3200 meters before splash. Note how large the downward integration is. Also, the upward integration yields a Launch Altitude more than 3000 meters less than the aircraft data Altitude shown under Launch Parameters:

Reporter Ignore Override	RECOMPUTE
of Drop Time (s) 675.3	Launch Time
unch Parameters	U1:28:27 2011-08-26 Height Overrides
Pressure (mb) 171.4 Clear Derature (deg C) -59.9 Clear	 ✓ Hit Surface? □ Set Heights Missing? □ Surface Altitude Unknown (Dropsonde over land
RH (%) 43.6	RH Channel for QC Use
ind Speed (m/s) 26.7	☑ RH0 (AVAPS Selected) □ RH1 □ RH2
I Direction (deg) 249.5 Clear Latitude (deg) 35.5131 Clear Longitude (deg) 74.8874 Clear Altitude (m) 13458 3 Clear	Dropsonde Height Integration Results Upward 10264.0 Launch Altitude (m) Downward 3203.7 Low Altitude (m)
Altitude (m) 13458.3 Clear	

Figure 11: In this example, the sonde failed at approximately 700 millibars.

In this case, the sonde failed just below the 700 mb level. With ASPEN still set to calculate a surface pressure (as dictated by the "Hit Surface" setting being checked) it assumes the last data received was just prior to splash. The resulting Extrapolated Pres (under Dropsonde Surface Parameters on the left side near the bottom) calculation yields a surface pressure of 700.8 mb.

The only way to code a valid TEMPDROP message is to uncheck Hit Surface, check Set Heights Missing and then click the RECOMPUTE button. The resulting Main screen after ASPEN recalculates is shown in Figure 12 below.

Main Raw QC XY Graph Skew-T Levels WMO Comm	Summary
D20110826 0/2827 P.2 102815159 Humcane	2011, 20110820N1 Guilstream G-1V SP, N49RF
Reportec Ignore Override	RECOMPUTE
d of Drop Time (s) 675.3	Launch Time
	07:28:27 2011-08-26
Launch Parameters	Height Overrides
Pressure (mb) 171.4	□ Hit Surface? Set Heights Missing?
mperature (deg C) -59.9	Surface Altitude Unknown (Dropsonde over land
RH (%) 43.6 🗹 Clear	← RH Channel for QC Use
Wind Speed (m/s) 26.7	RH0 (AVAPS Selected)
nd Direction (deg) 249.5	
Latitude (deg) 35.5131	Dropsonde Height Integration Results
Longitude (deg) 74.8874	Upward Launch Altitude (m)
Altitude (m) 13458.3	Downward 3203.7 Low Altitude (m)
Durana da Curfa da Davarrataria	
Dropsonde Surface Parameters	
Extrapolated Override Clear Pres (mb)	
Altitude (m) 0.0 Override Alt for Clear	
dy ACTIVE CONFIG: editsonde CON	FIG DIR : C :/Documents and Settings/richard.henning/Application Data/Aspen/

Figure 12: The result of the Hit Surface button (the default) being unchecked and the Set Heights Missing button being checked.

Note in Figure 12 there is no longer any upward integration calculation and no surface pressure. You may not transmit a message with geopotential heights from the top of the sounding to where it failed (ie: 200, 250, 300, 400, 500 and 700 mb levels). With there being no valid bottom of the sounding, since ASPEN integrates geopotential heights from the bottom upward, the only valid components of the TEMPDROP message will be winds, temperature and humidity data at the corresponding pressure levels where these measurements were made (with no heights showing the altitude where these pressure levels exist). While height data is arguably the most important component of an observation ingested by the numerical models, the remaining data in the message will still be of value (and certainly better than a missing ob).

Another useful tool to check for problems is the End of Drop Time window on the left side of the Main tab. Looking back at the first example (Figure 10 at the bottom of Page 10) it took 943.5 seconds (over 15.5 minutes) for the sonde to reach the surface. This is a typical duration for a drop from the G-IV (most are between 850 and 950 seconds). Durations significantly less than this from the G-IV suggests there was a problem. The two most common culprits for a much shorter data transmission interval are either a fast fall or early termination. In the event both the FD and the AVAPS Operator fail to notice the fast fall, ASPEN will usually flag the drop as such (see Figure 13 below):

	Reporter Ignore Ove	erride	REC	OMPUTE
End of Drop Time (s)	690.8	Clear	Launch Time	
aunch Parameters			time	date
Launen Parameters.			Height Overrides	
Pressure (mb)	178.7	Clear	Hit Surface?	Set Heights Missing?
Temperature (deg C)	-57.5	Clear	Surface Altitude Unknown (Dropsonde over land)
RH (%)	28.8	Processing Aler	QC Use	
Wind Speed (m/s)	38.4	A (D20120121	Selected)	RH1 RH2
Wind Direction (deg)	269.5		to be a feet follow method	Develop
Latitude (deg)	27.5076	This appears	or the state of the source of the state of t	Kesults
Longitude (deg)	54.9951		ok	Launch Altitude (m)
Altitude (m)	13005.3	Clear	<u>p</u>	Low Altitude (m)

Figure 13: Note the End of Drop Time (in the upper left) is only 690.8 seconds. This is too short of a time from launch to splash at typical G-IV operating altitudes. ASPEN has flagged it as a Fast Fall.

Going back to the first example on Page 10, the drop duration was 943.5 seconds. To ensure there was a clean termination at the surface go to the Raw tab. The top portion of the raw sonde data is shown below (note the aircraft data from the A00 Line of the D file appears as the top line and the first line of sonde data is from the LAU):

Main	Raw	QC	XY Gr	raph Skew-T	Levels	WMO Comm	Summary						
				D2012	0825_0601	157_P.1 111745	195 Hurrican	ne 2012, 201	20825N1 Gulf	stream G-IV	SP, N49RF		
Time	(5)	Pres	(mb)	Tdry (C)	RH (%)) Spd (m/s)	Dir (deg)	Alt (m)	Dz/Dt (m/s)	Lat (deg)	Lon (deg)	Sats (n)	Attributes
1.00		F 17	9.0	F -59.1	F 40.4	F 25.9	F 222.0	13070.8		27.1134	-79.5082		F
0.00		A 15	2.0	Ac 17.7	Ao 11.6	Ae 237.4	A 282.0		0.6	27.1130	-79.5064	9	Ae
0.25						Ae 237.2	Ae 282.1		0.7			9	Ae
0.50		An 12	8.0									0	P Ae
0.75												6	
00.1												0	
1.25												0	
1.50												0	
1.75		A 18	0.6	Ap -9.0	A. 1.0	Ae 228.6	Ap 280.7		2.5	27.1123	-79.5024	6	Ae
2.00						Ae 228.3	A 280.2		3.1			5	Ae
2.25		As 18	0.9	Ap -12.1	Ao 1.0	Ao 228.1	As 280.1		3.5	27.1121	-79.5012	5	Ae
2.50						Ae 227.4	An 279.5		3.5			4	Ae

Figure 14: The beginning of the Raw tab showing the top line is flight level data from the aircraft's AAMPS data system one second prior to the LAU (Launch Detect) line.

Scroll down the Raw screen until you reach the end of the sonde data. In Figure 15 below (from that same dropsondes introduced in Figure 10) you see the last line of data does indeed match the 943.5 seconds shown on the Main screen:

Main Raw	QC XY Gr	sph Skew-T	Levels V	IMO Comm	Summary						
		D20120	825_060157	7_P.1.1 11174	5195 Hurrica	ne 2012, 20	120825N1 Gu	fstream G-I	/ SP, N49RF		
Time (s)	Pres (mb)	Tdry (C)	RH (%)	Spd (m/s)	Dir (deg)	Alt (m)	Dz/Dt (m/s)	Lat (deg)	Lon (deg)	Sats (n)	Attributes
936.50				Be 5.9	Be 71.0		-11.0			9	Bc
936.75	1006.7	28.4	76.2	6.4	67.6	51.6	-11.1	27.1559	-79.5256	9	
937.00				6.4	67.1		-11.3			9	
937.25	1007.1	28.4	76.0	6.4	67.4	47.8	-11.2	27.1559	-79.5256	9	
937.50				6.4	67.5		-11.0			8	
937.75	1007.9	28.4	76.2	6.5	67.1	41.3	-11.0	27.1559	-79.5257	8	
938.00				6.5	66.5		-10.9			8	
938.25	1008.4	28.5	76.0	6.4	66.4	37.0	-10.9	27.1559	-79.5257	8	
938.50				6.5	65.2		-10.9			9	
938.75	1009.0	28.6	75.6	6.5	62.6	31.1	-11.2	27.1559	-79.5257	9	
939.00				6.7	65.4		-11.2			9	
939.25	1009.6	28.6	74.5	6.4	64.5	26.2	-11.1	27.1559	-79.5258	8	
939.50				6.7	65.4		-11.0			8	
939.75	1010.4	28.7	74.6	6.7	62.2	19.2	-11.1	27.1559	-79.5258	8	
940.00				6.7	65.2		-11.1			8	
940.25	1010.9	28.7	74.3	6.7	64.1	15.0	-11.1	27.1558	-79.5258	8	
940.50				6.4	64.7		-11.1			9	
940.75	1011.6	28.8	75.0	6.3	68.7	8.1	-10.9	27.1558	-79.5258	9	
941.00				6.6	68.6		-10.9			9	
941.25	1012.0	28.8	74.7	6.4	65.8	4.5	-11.0	27.1558	-79.5259	9	
941.50				6.3	64.6		-10.8			9	
941.75	1012.8	28.9	74.4	6.5	63.8	-2.1	-10.8	27.1558	-79.5259	9	
942.00				6.4	66.3		-10.8			9	
942.25	1013.3	28.9	74.2	Bo 7.0	Be 67.4	-6.9	-10.8	27.1558	-79.5259	9	Bc
942.50				6.4	64.6		-10.8			9	
942.75	1013.9	29.0	73.9	6.5	65.5	-12.0	-10.8	27.1558	-79.5260	9	
943.00				6.6	66.9		-10.8			9	
943.25	1014.5	29.0	74.3	6.5	65.5	-17.1	-10.7	27.1558	-79.5260	9	
943.50				6.5	64.8		-10.6			9	

Figure 15: The Raw tab showing the final seconds of a normal sonde termination.

This example above has all the attributes of a good sonde termination. It was receiving GPS signal from 9 satellites, with valid wind direction and speed, all the way to splash. The pressure steadily rose with each reading every 0.5 seconds until a raw maximum value of 1014.5 mb was measured just before reaching the surface.

Contrast that with the following case of a very problematic termination:

Main Raw QC XY Graph	Skew-T	Levels \	AMO Comm	Summary	
	D20110	120 090	607 P.2 093	3159096 Win	ter Storms 2011, 20110120N G-IVSP, N49RF
	Reported	Ignore	Override		RECOMPUTE
End of Drop Time (s)	874.76			Clear	CLaunch Time
					09:06:07 2011-01-20
Launch Parameters:					Height Overrides
Pressure (mb)	179.9			Clear	✓ Hit Surface? Set Heights Missing?
Temperature (deg C)	-54.9			Clear	Surface Altitude Unknown (Dropsonde over land)
RH (%)	30.5			Clear	RH Channel for QC Use
Wind Speed (m/s)	95.3			Clear	RH0 (AVAPS Selected)
Wind Direction (deg)	275.3			Clear	Dropsonde Height Integration Results
Latitude (deg)	32.4995			Clear	Loward 12112.2 Jaunch Altitude (m)
Longitude (deg)	57.7201			Clear	Downward 475.3 Low Altitude (m)
Altitude (m)	12588.5			Clear	Downward 473.3 Low Addude (m)
Dropsonde Surface Para	ameters				
Extrapolated	1	Override	•	Clear	
Pres (mb)	Reported	Pres (mb))		
Altitude (m) 0.0	Up-Integ	ration (m	5	Clear	

Figure 16: No surface pressure was calculated (in spite of the Hit Surface button being checked). There is nearly 500 meters of Downward Integration and a large difference between the Upward Integration and the Geopotential Altitude calculated by AAMPS

The three things that should be apparent in this example are the large downward integration and the fact that no Extrapolated Pressure was calculated under Dropsonde Surface Parameters. Also there is 475 meters of Downward Integration. Finally, the Upward Integration is also about 475 meters different than the Altitude of the sonde deployment as shown on the left under Launch Parameters (this is the aircraft's Geopotential Altitude as calculated by the aircraft's AAMPS Data System).

When the Raw tab is examined (see Figure 17 below), at the bottom of the data the pressure is nearly constant for the final 14 seconds of data at just under 733 mb (as is the temperature, humidity and altitude).

Main Raw	QC XY	aph Skew-T	Levels	WMO Comm	Summary						
		D2	20110120_0	90607_P.2 093	8159096 Win	nter Storms 2	2011, 2011012	ON G-IVSP, I	N49RF		
Time (s)	Pres (mb)	Tdry (C)	RH (%)	Spd (m/s)	Dir (deg)	Alt (m)	Dz/Dt (m/s)	Lat (deg)	Lon (deg)	Sats (n)	Attributes
860.76	P 732.8	₽ -21.9	P 11.7							0	P
861.26	P 732.7	P -21.9	P 11.3							0	P
861.76	Pc 732.7	-21.9	11.3			2530.1				0	Pc
862.26	Pc 732.8	-21.9	11.3			2529.2				0	Pc
862.76	Pc 732.8	-21.9	11.3			2529.2				0	Pc
863.26	Pc 732.8	-21.9	11.3			2529.6				0	Pc
863.76	Pc 732.7	-21.9	11.3			2529.7				0	Pc
864.26	Pc 732.8	-21.9	11.4			2529.5				0	Pc
864.76	Pc 732.7	-21.9	11.4			2530.0				0	Pc
865.26	P 732.8	P -21.9	₽ 11.3							0	P
865.76	Pc 732.8	-21.9	11.2			2529.2				0	Pc
866.26	Pc 732.8	-21.9	11.3			2529.6				0	Pc
866.76	P 732.8	P -21.9	P 11.4							0	P
867.26	P 732.7	P -21.9	P 11.4							0	P
867.76	Pc 732.7	-21.9	11.4			2529.8				0	Pc
868.26	Pc 732.7	-21.9	11.4			2529.6				0	Pc
868.76	Po 732.7	-21.9	11.3			2529.7				0	Pc
869.26	Pc 732.8	-21.9	11.3			2529.2				0	Pc
869.76	P 732.8	P -22.1	P 11.6							0	P
870.26	Pc 732.7	-21.9	11.5			2530.0				0	Pc
870.76										0	
871.26	Pc 732.7	-21.9	11.5			2530.0				0	Pc
871.76	P 732.7	P -21.9	₽ 11.5							0	P
872.26	P 732.7	P -21.9	P 11.5							0	P
872.76	P 732.7	P -22.1	P 11.4							0	P
873.26	Pc 732.7	-21.9	11.4			2529.8				0	Pc
873.76	Pc 732.8	-21.9	11.4			2529.4				0	Pc
874.26	Pc 732.8	-21.9	11.4			2529.4				0	Pc
874.76	Pc 732.8	-21.9	11.4			2529.3				0	Pc

Figure 17: Abnormal pressure trend: rather than slowly increasing, the pressure becomes "stuck" at around 732.7 mb

Time (s)	Pres (mb)	Tdry (C)	RH (%)	Spd (m/s)	Dir (dea)	Alt (m)	Dz/Dt (m/s)	Lat (deg)	Lon (dea)	Sats (n)	Attributes
795.26	Fe 964.5	9.1	83.4			382.9				0	Fc
795.76	Fe 965.1	9.2	83.4			377.4				0	FC
796.26	Fe 965.8	9.3	82.9			371.6				0	FC
796.76	Fe 966.5	9.3	82.8			365.6	1			0	FC
797.26	Fe 967.2	9.4	81.9			359.6				0	Fc
797.76										0	
798 26										0	
798.76										0	
799.26										0	
799 76	Fe 970 7	9.7	81.3			329.6				ő	Er:
800.26	Fe 971.4	97	81.2			324.2				0	Fr
800.76		2.0	01.2			521.2	-			0	
801 26										0	-
801.76										õ	
802.26										0	
802.76	P 974.8	P 10.0	P 78.9				-			0	P
803.26										0	
803.76										0	
804.26	P 977.3	P 9.9								0	P
804.76										0	
805.26										0	
805.76										0	
806.26										0	-
806.76							-		-	0	-
807.26										0	
807.76										0	
808.26										0	
808.76	P 983.0	P 10.5	P 76.5							0	P
809.26										0	

Figure 18: Data became very sporadic just above 800 millibars.

Scrolling back up to 800 seconds in Figure 18 we see that after 797.26 seconds (at 967.2 mb) the PTH data became very sporadic. At this point, we have already lost all GPS data with 0 satellites. Scrolling further down (Figure 19 below) we see the PTH data lose all semblance of validity at around 812 seconds (37.7 mb then 991.4 mb followed by 986.9 mb). At 824.76 seconds is the beginning of the near-constant pressure values of just under 733 mb that lasted until termination.

Main Raw	QC XY G	raph Skew-T	Levels W	VIO Comm	Summary						
		D2	20110120_09	0607_P.2 093	159096 Wint	ter Storms 2	011, 2011012	ON G-IVSP, N	V49RF		
Time (s)	Pres (mb)	Tdry (C)	RH (%)	Spd (m/s)	Dir (deg)	Alt (m)	Dz/Dt (m/s)	Lat (deg)	Lon (deg)	Sats (n)	Attributes 📤
811.76										0	
812.26	₽ 37.7									0	Р
812.76										0	
813.26										0	
813.76										0	
814.26										0	
814.76	P 991.4	P 11.2	P 73.4							0	Р
815.26										0	
815.76										0	
816.26	₽ 986.9	P 12.1	P 72.7							0	Р
816.76										0	
817.26										0	
817.76										0	
818.26										0	
818.76										0	
819.26										0	
819.76										0	
820.26										0	
820.76										0	
821.26										0	
821.76										0	
822.26										0	
822.76										0	
823.26										0	
823.76										0	
824.26										0	
824.76	Fo 732.8	Fc -21.9	11.3			2529.5				0	Fc 💼
825.26	Fc 732.7	Fc -21.9	11.3			2529.6				0	Fc
825.76	Fc 732.7	Fc -21.9	11.4			2529.6				0	Fc 🗸

Figure 19: Data either missing or erratic then the pressure hanging at a constant value

This case is a good opportunity to introduce the Skew T tab:

Figure 20: Missing data evident below 700 mb on the Skew T tab

SCISEC #.#

Figure 21: Clicking and dragging will zoom into a portion of the Skew T

Figure 22: The zoomed in area showing the missing data intervals in greater detail

SCISEC #.#

The bottom of the Skew T clearly shows this sonde has problems. The many large and small gaps that begin just below 750 mb and the lack of any valid data below about 970 millibars illustrate that this sonde cannot be used to calculate geopotential heights.

The Skew T screen in ASPEN is also a valuable tool for the initial screening of the Launch Parameter (aircraft data) section shown on the Main screen. At the high G-IV working altitudes (typically 41,000 through 45,000 feet Pressure Altitude), the aircraft's dew point values are generally unreliable and nearly always read far too warm. In most environments, the G-IV dew point sensors cannot register readings low enough to be accurate (especially in Winter Storm mission settings where flight above the tropopause is in relative humidity regimes of less than 5 percent). Occasionally, in the relatively moist Central Dense Overcast (CDO) of a tropical cyclone, there is good agreement between the aircraft-measured flight level dew point and the first few reliable sonde measurements after stabilization.

Additionally the aircraft temperature sensors can, at times, read too warm by a few degrees. The Skew T screen in ASPEN can assist the FD in determining whether to use or discard the flight level temperature and dew point in finalizing the sounding.

In Figure 23 below, the Skew T from 09:25:47z on 25 Aug 2012 shows an example of where the aircraft's temperature is a reasonable continuation of the trace created by the dropsonde thermistor, suggesting the temp under Launch Parameters should be kept.

Conversely, there is no meteorological evidence to support why there would be a sudden rightward shift in the dew point trace to accommodate the relatively moist aircraft dew point measurement...suggesting that parameter should be discarded.

Figure 23: Example where the aircraft's flight level temperature is consistent with the sonde derived trace below it but the aircraft measured dew point is not

Note in Figure 23 on the previous page that the aircraft-derived flight level temperature and dew point are the uppermost red and blue dots well above the rest of the data traces. The gap is normal and due to the long interval needed for the dropsonde's thermistor and hygristor to stabilize before they begin transmitting valid data.

In the example below from 12:40:14z on 12 January 2011, the aircraft temperature is significantly warmer than the first valid sonde temps at the top of the sounding (the Skew T only shows sonde data that has passed through the ASPEN QC filter). Here, there is not enough evidence to be confident in either the aircraft temp or dew point.

Figure 24: In this example, both flight level temp and dew point are suspect

To discard the aircraft temp and dew point, go to the Main screen and click the IGNORE boxes to the right of Temperature and Relative Humidity under Launch Parameters. Note that these steps generate a flashing exclamation point in the Toolbar as a reminder to always hit RECOMPUTE on the right to recalculate a new sounding:

Spen 3.1 - 7489 - [D20110112_124014_P.2]	
🔍 File Tools View Window Help	
Main Raw QC XY Graph Skew-T Levels WMO Comm Summary	
D20110112 124014 P.2 093419078 Wint	er Storms 2011, 20110112N G-TVCP, N40RE
Reported Ignore Override	RECOMPUTE
End of Drop Time (s) 865.03 Clear	Claunch Time
	12:40:14 2011-01-12
Launch Parameters:	Height Overrides
Pressure (mb) 156.8	 ✓ Hit Surface? □ Set Heights Missing? □ Surface Altitude Unknown (Dropsonde over land)
Temperature (deg C) -59.7 M Clear	
RH (%) 34.7 🗹 Clear	RH Channel for QC Use
Wind Speed (m/s) 33.6	RH0 (AVAPS Selected) RH1 RH2
Wind Direction (deg) 249.9	Dronsonde Height Integration Results
Latitude (deg) 44.0083 🗆 🛛 Clear	Diopsonde neight integration Results
Longitude (deg) 33.4982 Clear	Upward 13359.3 Launch Altitude (m)
Altitude (m) 13423.8 🗌 🛛 🛛 Clear	Low Altitude (m)

Figure 25: Checking ignore for any of the parameters on the left side generates a flashing exclamation point in the toolbar as a reminder to hit the RECOMPUTE button

After hitting RECOMPUTE the new Skew T will reflect omission of the flight level aircraft temperature and humidity data (see Figure 26 below). Note that the wind data collected from the aircraft is still included (the uppermost wind flag on the right).

Figure 26: After a new sounding is recomputed the points denoting flight level temperature and dew point (above the traces generated by the sonde) disappear

The decision as to whether to include the aircraft winds is another judgment call on the part of the FD. In recent years, the dependability of flight level (FL) winds on the G-IV has improved dramatically following dedicated wind calibration flights, but the validity of G-IV aircraft measured winds is something that must be checked for each drop. The P-3 aircraft winds can be assumed to be highly accurate unless shown otherwise. Figure 27 below is an example of suspect FL winds on the G-IV:

Figure 27: Example showing suspect G-IV aircraft derived flight level winds

The example in Figure 27 of the previous page from 23:39:30z 31 July 2011 shows flight level aircraft derived winds of 020 at 7 knots. The first two winds barbs depicting sonde derived winds show winds from an ESE direction, then a deep layer of easterly winds. While it will be shown shortly that an examination of just the wind barbs on the Skew T is not sufficient to make the determination that aircraft winds are not valid, it does provide evidence that further investigation is necessary.

The next step is to examine the winds in the Raw tab. In Figure 28 below you see the aircraft winds on the top line of 022 degrees at 3.6 meters per second. Then you see three seconds of winds that still reflect the aircraft's forward motion (speeds in excess of 160 m/s). When the winds begin to settle into believable numbers around five seconds after deployment, they are southerly at less than 10 m/s.

main	D20110731_233930_P2 111445170 Hurricane 2011, 20110731n Gulfstream G-IV SP, N49RF													
		D201	10731_23393	30_P.2 11144	5170 Hurrica	ne 2011, 20	110731n Gulfs	tream G-IV	SP, N49RF					
Time (s)	Pres (mb)	Tdry (C)	RH (%)	Spd (m/s)	Dir (deg)	Alt (m)	Dz/Dt (m/s)	Lat (deg)	Lon (deg)	Sats (n)	Attributes	^		
-1.00	F 148.4	F68.1	F 53.1	F 3.6	F 22.0	14315.1		13.8128	-56.8893		F			
0.00	Ae 132.0	Ae 19.1	<mark>Ae</mark> 1.8	Ar 218.8	Ae 181.5		-0.3	13.8109	-56.8893	12	Ae			
0.25				Ar 216.9	🌬 181.5		-0.3			12	Ae			
0.50	<mark>№</mark> 145.2	<mark>Ae</mark> 6.8	Ae 1.0	№ 213.2	<mark>№</mark> 179.8		-0.2	13.8119	-56.8893	11	Ae			
0.75				le> 211.7	№ 179.9		-0.1			10	Ae			
1.00	Ae 128.4								76.6255	8	P Ae G			
1.25										7				
1.50										0				
1.75										0				
2.00										0				
2.25	Ar 149.9	Ae -16.4	Ae 1.0	🍋 174.7	🌬 178.7		-19.7	13.8149	-56.8892	4	Ae			
2.50				№ 165.3	Ae 180.1		-26.0			4	Ae			
2.75	A 150.1	Ae -19.1	Ae 1.0							0	Ae			
3.00										0				
3.25	Ar 150.4	Ae -21.7	Ae 1.0	№ 53.0	🌬 184.5		-26.8	13.8154	-56.8892	4	Ae			
3.50				Ar 38.2	Ar 179.2		-25.5			4	Ae			
3.75	Ar 150.6	<mark>№</mark> -24.2	Ae 1.0	№ 19.6	🏊 169.7	14216.0	-24.3	13.8153	-56.8892	7	Ae			
4.00				№ 14.2	<mark>№</mark> 168.8		-23.1			8	Ae			
4.25	Ar 150.9	Ae -26.6	Ae 1.0			14204.0				0	Ae			
4.50				Ae 11.5	<mark>№</mark> 182.6		-22.2			9	Ae			
4.75	Ae 151.1	Ae -29.0	Ae 1.0	№ 9.6	🌬 182.6	14192.4	-21.5	13.8144	-56.8893	10	Ae			
5.00				Ae 7.2	<mark>№</mark> 180.2		-21.8			7	Ae			
5.25	Ae 151.7	<mark>Ae</mark> -33.8	Ae 1.0	№ 6.7	🌬 181.1	14166.2	-22.1	13.8137	-56.8893	7	Ae			
5.50				<mark>∧e</mark> 6.0	Ar 182.2		-22.2			8	Ae			
5.75										0				
6.00										0				
6.25	<mark>№</mark> 151.9	<mark>Ae</mark> -36.0	№ 1.0	№ 5.4	<mark>№</mark> 181.1	14154.8	-22.1	13.8135	-56.8893	8	Ae			
6.50				<mark>№</mark> 4.6	<mark>№</mark> 183.7		-22.3			9	Ae			
6.75	A 152.2	Ae -38.1	A⊳ 1.0	№ 4.6	№ 180.8	14141.6	-22.4	13.8134	-56.8893	9	Ae	*		

Figure 28: Looking at this example using the Raw tab: Aircraft measured winds of 022 degrees at 3.6 m/s do not correlate well with the first few potentially valid winds at around 5 to 6 seconds that are from a southerly direction.

Looking at the QC tab in Figure 29 below, the first valid sonde winds that make it through the ASPEN QC filter are 10 sec after launch and are SSE at less than 2 m/s:

Main Raw	QC XY Graph	Skew- <u>T</u> Levels	WMO <u>C</u> omm	<u>S</u> ummary					
		D20110731_2	33930_P.2 1114	445170 Hurrica	ne 2011, 20110	731n Gulfstrean	n G-IV SP, N49F	۲F	
Time (s)	Pres (mb)	Tdry (C)	RH (%)	Spd (m/s)	Dir (deg)	Alt (m)	Dz/dt (m/s)	Lat (deg)	Lon (deg)
9.00									
9.25								13.8133	-56.8893
9.50									
9.75								13.8132	-56.8893
10.00				1.7	168.2				
10.25				1.6	166.5			13.8132	-56.8893
10.50				1.6	164.6				
10.75				1.6	162.4			13.8132	-56.8893
11.00				1.6	160.0				
11.25				1.6	157.4			13.8132	-56.8893
11.50				1.6	154.5				
11.75				1.5	151.5			13.8132	-56.8893

Figure 29: QC tab showing the first quality controlled winds coming in 10 seconds after launch and around 150 degrees different in direction from the aircraft measured winds

While possible, it is unlikely to find winds about 150 degrees apart in direction in the first ten seconds of a sounding. To discard the aircraft winds, click the IGNORE box next to Wind Speed and Wind Direction under Launch Parameters. Remember to always hit the RECOMPUTE button any time after you check or uncheck an IGNORE box.

Figure 30 below, from 13:20:51z 26 August 2012, points out how important it is to not discount the validity of the FL wind based solely on their apparent discontinuity with the first few sonde wind barbs on the Skew T. It is important to understand that when the G-IV reaches the near 150 millibar level it enters the outflow regime of hurricanes where the winds change direction at a few degrees outward from the eyewall, transitioning from clockwise to counterclockwise flow. There are many instances when a sonde will be deployed into the outflow regime then quickly fall into the inflow regime (which may extend up to 200 mb or higher in more intense hurricanes). Below we see aircraft derived 148 mb winds of 260 at 28 knots with southerly and SSE wind barbs denoting the first several sonde derived winds plotted on the Skew T:

Figure 30: Example of an apparent discontinuity (on first glance looking only at the wind barbs) showing southerly sonde derived winds versus westerly aircraft derived winds

Examining the raw tab of this sounding (Figure 31 below) we see the flight level aircraft derived winds on the top line (260.5 degrees at 14.4 m/s). The forward motion of the aircraft is reflected in the first several seconds of wind data. By 5.50 seconds after launch, the number of satellites being used for position is up to 10 and the wind speed and direction have stabilized into a southwesterly direction between 11-12 m/s.

Main Raw	QC XY G	raph Skew-T	Levels Wi	MO Comm	Summary								
D20120826_132051_P.2 111745152 Hurricane 2012.0826N1 Guifstream G-IV SP, N49RF Time (s) Pres (mb) Tdry (C) RH (%) Spd (m/s) Dir (deg) Alt (m) Dz/Dt (m/s) Lat (deg) Lon (deg) Sats (n) Attributes													
Time (s)	Pres (mb)	Tdry (C)	RH (%)	Spd (m/s)	Dir (deg)	Alt (m)	Dz/Dt (m/s)	Lat (deg)	Lon (deg)	Sats (n)	Attributes		
-1.00	F 147.9	F67.5	F 68.8	F 14.4	F 260.5	14362.1		25.0058	-78.5091		F		
0.00	№ 154.3	Ae 15.5	Ae 1.0	Ar 217.9	Ar 129.9		0.5	25.0061	-78.5096	10	Ae		
0.25				Ar 219.1	Ar 129.9		0.2			10	Ae		
0.50	A⊳ 148.0	<mark>Ae</mark> 4.8	Ae 1.0	Ae 218.4	Ar 128.9		0.1	25.0067	-78.5104	10	Ae		
0.75				№ 218.2	Ar 128.7		-0.4			10	Ae		
1.00	Ar 148.7	Ae -3.2	Ae 1.0	Ar 218.1	Ar 128.8		-0.8	25.0074	-78.5112	10	Ae		
1.25				№ 217.4	Ar 126.6		-2.6			9	Ae		
1.50	№ 149.0	Ae -7.4	Ae 1.0	Ae 216.9	Ar 127.0		-3.3	25.0079	-78.5121	9	Ae		
1.75				Ar 216.8	Ar 126.2		-4.7			9	Ae		
2.00	№ 149.2	Ae -10.8	Ae 1.0	Ae 213.7	Ar 125.7		-5.1	25.0085	-78.5129	7	Ae		
2.25				Ar 212.2	Ar 125.4		-5.3			6	Ae		
2.50	№ 149.3	Ae -13.5	Ae 1.0	Ar 209.8	Ar 125.1		-5.4	25.0090	-78.5138	6	Ae		
2.75				Ar 207.4	l25.0 №		-5.4			5	Ae		
3.00	№ 149.6	Ae -16.3	Ae 1.0	Ae 205.3	Ar 125.1		-5.3	25.0096	-78.5146	5	Ae		
3.25				Ar 202.9	Ar 125.0		-5.3			5	Ae		
3.50	№ 150.2	Ae -19.1	Ae 1.0	Ae 203.3	Ar 124.9	14275.3	-5.2	25.0101	-78.5154	4	Ae		
3.75				l02.6 №	Ar 126.8		12.4			6	Ae		
4.00	№ 150.5	Ae -21.6	Ae 1.0	Ae 63.1	Ar 129.9	14261.9	17.5	25.0098	-78.5149	4	Ae		
4.25				№ 50.3	🍋 131.3		19.4			4	Ae		
4.50	Ar 150.8	Ae -24.2	Ae 1.0	Ae 48.0	Ar 134.3	14250.5	21.3	25.0098	-78.5148	4	Ae		
4.75				<mark>№</mark> 24.8	№ 140.7		15.6			6	Ae		
5.00	№ 151.0	Ae -26.9	Ae 1.0	Ae 11.9	Ar 159.0	14239.6	7.1	25.0094	-78.5140	8	Ae		
5.25				<mark>≫</mark> 8.0	ሎ 198.7		-0.9			9	Ae		
5.50	Ar 151.3	Ae -29.4	Ae 1.0	A 11.2	Ar 222.8	14226.0	-9.3	25.0089	-78.5130	10	Ae		
5.75				Ar 11.9	Ar 227.5		-14.6			10	Ae		
6.00	Ae 151.6	Ae -32.0	Ae 1.0	Ae 11.9	Ae 228.7	14211.4	-18.1	25.0083	-78.5119	10	Ae		
6.25				Ar 11.8	Ar 230.4		-20.3			10	Ae		
6.50	№ 151.8	<mark>№</mark> -34.2	Ae 1.0	Ae 11.5	Ae 233.2	14198.7	-21.2	25.0080	-78.5111	8	Ae		
6.75				№ 11.4	Ar 234.4		-21.8			8	Ae		

Figure 31: Raw tab showing aircraft derived winds on the first line (provided by the AAMPS data system) and then around five seconds of invalid sonde winds that reflect the rapid forward motion of the sonde after leaving the launch tube. After five seconds the sonde winds stabilize only about 3 knots and 25 degrees different than FL winds

Examining the QC tab of data that has made it through the ASPEN validity filters we see the first QC'd wind values come in at 10 seconds showing 243.8 degrees at 11.3 m/s. Even though the Skew T did not display these WSW winds as wind barbs, they help to confirm there was not sufficient evidence to discard the aircraft derived flight level winds as invalid.

Main	Raw	QC	XY Graph	Skew-T	Levels	WMO	Comm	Summary					
				D20120)826 <mark>_1</mark> 3	2051_P.	2 11174	45152 Hurri	cane 2012, 201208	326N1 Gulfstrea	am G-IV SP, N49	RF	
Tin	ne (s)	P	res (mb)	Tdry	(C)	RH ((%)	Spd (m/s) Dir (deg)	Alt (m)	Dz/dt (m/s)	Lat (deg)	Lon (deg)
9.50												25.0076	-78.5098
9.75													
10.00								11.3	243.8			25.0076	-78.5097
10.25								11.2	243.6				
10.50								11.1	243.5			25.0076	-78.5097
10.75								11.0	243.4				
11.00								10.9	243.3			25.0077	-78.5096
11.25								10.8	243.2				
11.50								10.7	243.1			25.0077	-78.5095
11.75								10.6	243.1				
12.00								10.5	243.0			25.0077	-78.5095

Figure 32: QC tab showing the first valid winds at 10 sec after launch are only about 15 degrees in direction and 3 knots in speed different than aircraft derived FL winds

7.6 Understanding the WMO TEMPDROP Message

After the initial validity checks performed both manually by the FD and automatically by ASPEN, a WMO TEMPDROP message is created. It is vital to examine the message. before it is transmitted off the aircraft, First, an understanding of the components of a TEMPDROP message is necessary. To view the TEMPDROP message, click on the WMO tab in ASPEN. An example is shown in Figure 33 below. Note that it reads beginning from the bottom of the sounding upward (the opposite of a D file or other ASPEN products that read from the top down).

Main	Raw QC	XY Gra	oh Skew	/-T Leve	els WMO	Comm	Summa	ry			
			D20	120826_	130943_I	P.1 1224	55131 Hu	<mark>irricane 2</mark>	012, 201	.20826N1 Gulfstre	am G-IV SP, N49RF
Dele	te M	odify	Restore	e Inser	t Before	Insert a	fter		Orig	inal groups: 143	Modified groups: 0
UZNT1	3 KWBC 2	11807									
XXAA	76131	99241	70775	08047	99008	27235	13041	00069	26633	13044	
92755	22633	14048	85487	17002	15050	70129	09815	15536	50585	04745	
14522	40758	14556	15022	30970	28950	14015	25098	38758	17010	20247	
51961	20506	15427	665//	29015	88999	77999					
31313	09608	81309									
61616	NOAA9 1	909A IR	RENE	OB	30						
62626	MBL WNE	13547	AEV 074	83 DLM	WND 150	29 0071	48 WL15	0 13045	08		
3 REL	2410N07	752W 13	0942 SE	G 2420N	107758W	132501				=	
XXBB	76138	99241	70775	08047	00008	27235	11949	22809	22937	23036	
33902	21233	44850	17002	55735	12224	66659	07011	77649	07050	88584	
01607	99563	00856	11551	00727	22524	02956	33508	04119	44493	05160	
55485	05558	66480	06128	77449	09518	88408	13923	99401	14556	11380	
17134	22358	19358	33350	20561	44330	24159	55318	25939	66262	35958	
77197	53161	88148	67124								
21212	00008	13041	11989	13548	22968	14047	33935	14551	44890	14046	
55850	15050	66696	15036	77622	17036	88455	13026	99336	16517	11317	
14016	22280	14011	33233	17507	44160	24512	55155	27513	66148	29516	
31313	09608	81309									
61616	NOAA9 1	909A IR	RENE	OB	30						
62626	MBL WND	13547	AEV 074	83 DLM	WND 150	29 0071	48 WL15	0 13045	08		
3 REL	2410N07	752₩ 13	0942 SF	G 2420N	107758W	132501				=	

Figure 33: A WMO TEMPDROP message from a G-IV mission into Hurricane Irene

Much of the code is pre-determined. A full tutorial of all the groups is included as Appendix A. The message can be broken down into five sections:

- 1) Headers
- 2) The XXAA Section Mandatory Level Data
- 3) The XXBB Section Significant Temperature Levels
- 4) The 21212 Group Significant Wind Levels
- 5) Remarks

Headers – UZNT13 defines this message as a TEMPDROP for the North Atlantic Basin. This is automatically set by the Weather Message Module (WMM). The others most commonly used are:

UZPN13 - Eastern North Pacific

UZPA13 - Western North Pacific (west of the International Date Line)

The next group in the Header is always KWBC for NOAA AOC aircraft. This is also set by the WMM. This distinguishes messages sent by the P-3 and G-IV from those transmitted by the 53rd WRS which commonly uses KNHC. Finally, 211807 indicates that ASPEN processed this sounding and created the TEMPDROP on the 21st day of the month at 1807 UTC.

The first few groups of the XXAA section are non-meteorological bookkeeping and explained in Appendix A. The first meteorological item to check is the sea level pressure which is denoted as a three digit number which follows the 99 identifier. In the example highlighted in Figure 34 below we see the 99 identifier followed by 008. This denotes a sea level pressure of 1008 millibars. ASPEN will round its calculation to the nearest whole millibar. When sea level pressure is 1000 mb or higher the leading 1 is dropped. The next group shows surface temperature and dew point depression. In this case, 27235 denotes a temperature of 27.2C and a dew point depression of 3.5 degrees C. Finally, the surface wind group, 13041, denotes a wind of 130 at 41 knots. The wind direction is graduated in units of five degrees. ASPEN calculates wind direction to the nearest five degree increment. When winds are greater than 100 knots and the wind direction ends in five (such as 135 degrees), the hundreds digit for speed is added to the five for direction. Therefore a wind of 135 at 127 knots would be coded as 13627. A wind of 135 at 208 knots would be coded as 13708.

```
UZNT13 KWBC 211807
```

XXAA	76131	99241	70775	08047	99008	27235	13041	00069	26633	13044
92755	22633	14048	85487	17002	15050	70129	09815	15536	50585	04745
14522	40758	14556	15022	30970	28950	14015	25098	38758	17010	20247
51961	20506	15427	665//	29015	88999	77999				
31313	09608	81309								
61616	NOAA9 1	.909A IR	ENE	ОВ	30					
Fiaure	34: The	XXAA S	ection of	a WMO	TEMPD	ROP me	essade			

The next mandatory level in the XXAA section is 1000 millibars. Its groups are highlighted in Figure 35 below. The 1000 mb level is identified by a leading 00 followed by the 1000 mb geopotential height (69 meters in this case). The temperature and dew point depression group, as well as the wind group are coded the same as in the surface data groups. If the surface pressure is less than 1000 mb there will be no temperature, humidity or wind data for the 1000 mb mandatory level. In these cases, the temperature humidity and wind groups are slashed out with ////.

```
UZNT13 KWBC 251647
                                                           00069
XXAA
       76131
               99241
                      70775
                             08047
                                     99008
                                            27235
                                                    13041
                                                                   26633
                                                                          13044
92755 22633
               14048
                      85487
                             17002
                                     15050
                                             70129
                                                    09815
                                                           15536
                                                                   50585
                                                                          04745
14522
       40758
               14556
                      15022
                             30970
                                     28950
                                            14015
                                                    25098
                                                           38758
                                                                   17010
                                                                          20247
       20506
                      665//
                             29015
                                     88999
                                             77999
51961
               15427
       09608
31313
               81309
61616 NOAA9 1909A IRENE
                                 OB 30
Figure 35: The 1000 millibar Group of the XXAA Section
```

The next level is 925 mb (identified by the leading 92 in the geopotential height group). Note in Figure 35 above that the geopotential height is coded explicitly as 755 meters. Above 925 mb, each subsequent mandatory level must use some form of shorthand to code geopotential height with only three digits available. For 850 millibars, in the example above the height is 1487 meters with the leading digit being dropped. For 700 millibars above the height is 3129 meters with the leading digit again being dropped. Beginning at 500 mb, the height is shown in decameters (the geopotential height in the example above is 5850 meters with the 400 mb height being 7580 meters).

Beginning at 500 millibars, while ASPEN calculates geopotential heights to the nearest meter, it codes the TEMPDROP message rounded to the nearest decameter. It will be shown in later sections that tools in ASPEN will display heights at these higher levels to one meter resolution but then not code them to the same resolution in the message.

Above 300 millibars (where geopotential heights exceed 10,000 meters) even though the value is still expressed in decameters there are not enough available digits to code heights without dropping the leading digit. Therefore, as in Figure 36 below, while the 300 mb height is simply 970 decameters or 9700 meters, beginning at the 250 mb height (shown as 098) the leading digit of 1 is dropped denoting a height of 1098 decameters or 10,980 meters. The 200 mb height below is 12,470 meters and the 150 mb height is 14,270 meters.

UZNT13 KWBC 251647

XXAA	76131	99241	70775	08047	99008	27235	13041	00069	26633	13044
92755	22633	14048	85487	17002	15050	70129	09815	15536	50585	04745
14522	40758	14556	15022	30970	28950	14015	25098	38758	17010	20247
51961	20506	15427	665//	29015	88999	77999		-		
31313	09608	81309								
61616	NOAA9 1	909A IR	ENE	OB	30					

Figure 36: Since the 250 mb Geopotential Height is greater than 10,000 meters, the value of 10,980 meters (1098 decameters) is denoted as 098. The leading digit is also dropped for 200 and 150 millibar heights.

It is useful to have a feel for the general range in which to expect the geopotential heights to fall. Below in Table 1 are the standard heights of each mandatory level in an idealized atmosphere with a surface pressure of 1013.2 mb, a surface temperature of 20C, a standard lapse rate of 6.5 degrees, and a tropopause height of 226 millibars:

1000 mb	111 m
925 mb	762 m
850 mb	1457 m
700 mb	3012 m
500 mb	5574 m
400 mb	7185 m
300 mb	9164 m
250 mb	10363 m
200 mb	11784 m
150 mb	13608 m

Table 1: Standard Geopotential Heights of each mandatory level

SCISEC #.#

It is important to have a good grasp of the synoptic setting in which a mission will be conducted with the resulting effects that can be expected on the geopotential heights. In general, G-IV Winter Storm missions flown above large, cold core baroclinic lows at high latitudes over the Pacific Ocean will result in geopotential heights much lower than those shown in the table above. In contrast, a Hurricane Synoptic Surveillance G-IV mission may sample the Subtropical Ridge over the North Atlantic and find geopotential heights considerably higher. When circumnavigating the core of a hurricane (or flying across the top of the core on a G-IV Tail Doppler Radar CDO mission) surface pressures and geopotential heights in much of the troposphere will be well below standard heights, however, strong warm core barotropic systems display positive geopotential height anomalies in the upper troposphere.

Regarding temperature, when the last digit (tenths of a degree) is even, this denotes above freezing. When it is an odd number, the temperature is negative. In Figure 37 below, the 700 mb temperature is +9.8C while the 500 mb temp is -4.7C.

UZNT13 KWBC 251647 XXAA 76131 99241 70775 08047 99008 27235 13041 00069 26633 13044 92755 22633 14048 85487 17002 15050 70129 09815 15536 50585 04745 14522 40758 14556 15022 30970 28950 14015 25098 38758 17010 20247 77999 51961 20506 15427 665// 29015 88999 31313 09608 81309 61616 NOAA9 1909A IRENE OB 30

Figure 37: Positive temperatures are denoted by the third digit of a temperature being even. Negative temperatures end in an odd number. Here the 700 mb temp is +9.8C while the 500 mb temp is -4.7C

Appendix A includes a full description of the coding of dew point depression (DPD). Summarizing some of the most commonly seen values, when the DPD is between 0 and 4.9 degrees C, it is explicitly coded. In Figure 38 below, the last two digits of the highlighted groups for the surface through 500 mb all denote DPDs in this range (3.3 at 1000 and 925 mb, 0.2 at 850 mb, 1.5 at 700 mb and 4.5 degrees at 500 mb).

UZNT13	KWBC 2	51647									
XXAA	76131	99241	70775	08047	99008	27235	13041	00069	26633	13044	
92755	22633	14048	85487	17002	15050	70129	09815	15536	50585	04745	
14522	40758	14556	15022	30970	28950	14015	25098	38758	17010	20247	
51961	20506	15427	665//	29015	88999	77999					
31313	09608	81309									
61616	NOAA9 1	909A IR	ENE	OB	30						

Figure 38: Dew point depression of 3.5 degrees at the surface, 3.3 at 1000 mb and 925 mb, 0.2 at 850 mb, 1.5 at 700 mb and 4.5 at 500 mb

SCISEC #.#

When the DPD is between 5.0 and 5.4 degrees, it is coded as 50. This is highlighted in Figure 39 below for 300 mb:

UZNT13 KWBC 251647 XXAA 76131 99241 92755 22633 15536 50585 14522 40758 14556 38758 17010 665// 29015 51961 20506 15427 31313 09608 81309 61616 NOAA9 1909A IRENE OB 30

Figure 39: Dew point depression at 300 mb of between 5.0 - 5.4 degrees coded as 50

Between 5.5 and 6.0 degrees, DPD is coded as 56 seen in Figure 40 below at 400 mb:

UZNT13 KWBC 251647 XXAA 14522 40758 30970 28950 38758 17010 51961 20506 15427 665// 31313 09608 81309 61616 NOAA9 1909A IRENE OB 30 Figure 40: Dew point depression at 400 mb of between 5.5 - 6.0 degrees coded as 56

When the DPD is more than 6.0 degrees, the value is coded only to the nearest whole degree and added to the number 50. In Figure 41 below, in the highlighted group at 250 mb the 58 represents a DPD of 8 degrees while the 61 at 200 mb represents an 11 degree DPD:

UZNT13	KWBC 2	51647								
XXAA	76131	99241	70775	08047	99008	27235	13041	00069	26633	13044
92755	22633	14048	85487	17002	15050	70129	09815	15536	50585	04745
14522	40758	14556	15022	30970	28950	14015	25098	38758	17010	20247
51961	20506	15427	665//	29015	88999	77999				
31313	09608	81309								
61616	NOAA9 1	909A TR	ENE	OB	30					

Figure 41: Dew point depression at 250 mb of 8 degrees coded as 58 and a DPD of 11 degrees at 200 mb coded as 61

For conditions where the relative humidity is measurable but less than 20%, 80 would be used (implying a DPD of 30 for everything in that range). If the air is too dry to measure humidity, then // is used. If the IGNORE box for RH is checked on the ASPEN Main tab the resulting TEMPDROP message (see Figure 42 on the next page) will show // for DPD at 150 mb (if the flight level is above 150 mb and the first valid dropsonde humidity readings do not begin until the sonde is below 150 mb).

UZNT13	KWBC 2	61347								
XXAA	76131	99241	70775	08047	99008	27235	13041	00069	26633	13044
92755	22633	14048	85487	17002	15050	70129	09815	15536	50585	04745
14522	40758	14556	15022	30970	28950	14015	25098	38758	17010	20247
51961	20506	15427	665//	29015	88999	77999				
31313	09608	81309								
61616 :	NOAA9 1	909A IR	ENE	OB	30					

SCISEC ##

Figure 42: For 150 mb, when the IGNORE box is checked for Humidity (RH%) under Launch Parameters then // will appear in the TEMPDROP message for DPD

When the surface pressure is below 1000 mb, the temperature, humidity and wind groups for the 1000 mb mandatory level are slashed out. In these cases, the 1000 mb geopotential height is a negative value and is coded by adding 500 to the height as shown below in Figure 43 where 535 denotes a geopotential height of -35 meters. This case is from a WSR mission southwest of Alaska near the International Date Line (note the UZPN13 header).

UZPN13	KWBC 2	61443								
XXAA	60132	99465	71800	16260	99996	04840	18503	00535	/////	11111
92596	00457	25008	85270	03159	25010	70776	13158	23526	50529	26557
26052	40687	37361	25578	30880	50567	27078	25997	55974	22521	20141
51183	18520	88249	56175	22022	77338	26106	42535			
31313	09608	81232								
51515	10190	15328								
61616 1	NOAA9 0	1WSW TR	ACK71	OB	09					

Figure 43: An example where the surface pressure is below 1000 mb. In these cases, the 1000 millibar Geopotential Height is a negative value and is denoted in the 1000 mb Group by adding 500 to the value (the 535 here denotes a 1000 mb height of -35 meters). The rest of the Group (temperature, humidity and winds) is slashed out with /////

Looking further at the XXAA Section of this sounding, the tropopause data is shown near the end of the section after the highest mandatory level (which in the example shown below as Figure 44 is 200 mb). The identifier for the tropopause data is 88 and, in this case shown below, is located at 249 mb. The next two groups are the temp, humidity, and wind found at the tropopause in the same format as the mandatory levels (temp -56.1C, DPD 25 deg C, winds 220 at 22 knots).

UZPN13	KWBC 2	61443								
XXAA	60132	99465	71800	16260	99996	04840	18503	00535	/////	11///
92596	00457	25008	85270	03159	25010	70776	13158	23526	50529	26557
26052	40687	37361	25578	30880	50567	27078	25997	55974	22521	20141
51183	18520	88249	56175	22022	77338	26106	42535			
31313	09608	81232								
51515	10190	15328								
61616	NOAA9 0	1WSW TR	ACK71	OB	09					

Figure 44: The Tropopause Data Group follows the "88" identifier after the highest mandatory level

The final groups in the XXAA Section come after the tropopause 88 groups and describe with the maximum wind found in the sounding. In the case shown in Figure 44 on the previous page, the maximum wind did not occur at flight level so it is identified by 77 (if the max wind coincides with flight level it is coded as 66). What follows the 77 is the level which the max wind was found...338 mb in the case. The next group is the direction and speed of the max wind (260 at 106 knots). The final group in this set deals with characterization of the wind shear. This group is very complex and not typically QC'd by the FD on a busy mission with many drops to process. An explanation is included in Appendix A.

The XXBB Section describes significant temperature levels where there is an abrupt change in the lapse rate. The obvious example of what will trigger ASPEN to generate a significant level in this section is when it encounters an inversion. However, any change in the lapse rate that meets the criteria established in the ASPEN user settings will trigger creation of a level.

The same book keeping found at the beginning of the XXAA Section also begins the XXBB Section (items such as date / time group, location, octant and Marsden Square of the Earth which are explained in the appendix). The first significant level is always the surface if it was measured. If so, the surface will use the identifier 00...if there was no surface temperature data the first significant level will be identified by 11. Subsequent significant levels are then identified by 22, 33, 44, and so on, followed in the group by the pressure level of that significant temperature departure. The 00 is not repeated as it is reserved for use only for designating the surface (so 99, if it is coded, would be followed by 11). In Figure 45 below there are 18 significant temperature levels beginning with the surface (996 mb) where the following group follows the same temp and humidity coding as in the XXAA Section (temp +4.8C DPD of 4.0 degrees). The next significant level at 917 mb has a temp of -0.01C and a DPD between 5.5 and 6.0 degrees. Then we have additional levels from 895 mb up to 163 mb (temp -50.7C DPD 13 degrees).

XXBB	60138	99465	71800	16260	00996	04840	11917	00156	22895	00563
33850	03159	44809	05161	55739	11356	66664	14764	77653	13182	88637
12187	99581	17773	11511	25357	22404	36761	33375	40959	44261	55372
55241	56376	66213	49183	77185	53369	88163	50763	-		

Figure 45: The XXBB Section showing 18 significant temperature levels

The 21212 Section is for significant wind levels. In a fashion similar to the XXBB Section, a group is created each time there is a significantly abrupt change in wind speed or direction to meet the thresholds established in the User Settings. There are no bookkeeping groups in the 21212 Section. It begins with the 21212 identifier immediately below the last line of the XXBB Section and uses the same convention beginning with 00 to denote the surface wind then 11 to mark the first significant wind level aloft (if no surface winds are measured the first identifier used is 11). There are 25 groups (seen in Figure 46 at the top of the following page) beginning with a surface (996 mb) wind of 185 at 3 knots. The next significant wind level is 916 mb with winds of 255 at 10 knots. Note that the highest wind in a sounding is always one of the significant wind levels in the 21212 Section (see the level marked with 44 at 338 mb where winds are 260 at 106 knots).

21212	00996	18503	11916	25510	22882	26510	33850	25010	44842	26511
55825	26512	66799	23015	77680	22530	88660	22026	99633	27017	11599
28526	22549	26540	33435	25559	44338	26106	55293	27075	66264	27533
77259	27023	88255	24018	99242	21030	11227	22547	22216	23045	33204
19518	44197	18522	55183	19534	66163	20522				

Figure 46: The 21212 Section showing 25 significant wind levels

Remarks are signified by assigned designations. Many of the remarks used in reconnaissance fall under the category of "nationally developed" codes and thus follow the 62626 group identifier. In Figure 47 below, the first remark following the 62626 identifier is for the last QC'd wind prior to splash. This LST WND remark is not used if the last valid wind is measured within 12 meters of the surface. When the last valid wind is above 12 meters the surface wind is slashed out with ///// in the XXAA and 21212 Sections. In the case below the last valid wind as per the ASPEN filter was 16 meters.

```
UZPA13 KWBC 262041
XXAA 70102 99357 11688 12858 99995 09037 ///// 00538 ///// /////
92603 04230 29034 85285 01107 28036 70808 10958 26550 50530 29162
26578 40687 37962 26122 30881 41995 26621 25005 417// 27145 20155
453// 26639 88348 45374 26119 66172 26650 414//
31313 09608 81009
51515 10190 15346
61616 NOAA9 07WSW TRACK76
                               OB 16
62626 LST WND 016 MBL WND 28028 AEV 07483 LAST REPORT DLM WND 265
77 994172 WL150 27523 089 REL 3573N16884E 100949 SPG 3576N16922E
102313 =
XXBB 70108 99357 11688 12858 00995 09037 11850 01107 22826 02712
33815 01956 44804 02158 55711 10357 66660 13564 77539 25975 88522
27362 99508 28763 11438 32776 22386 40162 33356 44772 44342 45576
55300 41995 66290 40599 77261 41798 88217 427// 99172 47964
21212 00995 ///// 11994 27022 22946 29033 33850 28036 44726 27042
55641 25568 66528 25566 77416 26121 88317 26113 99274 27141 11234
26647 22191 26630 33172 26650
31313 09608 81009
51515 10190 15346
61616 NOAA9 07WSW TRACK76
                               OB 16
62626 LST WND 016 MBL WND 28028 AEV 07483 LAST REPORT DLM WND 265
77 994172 WL150 27523 089 REL 3573N16884E 100949 SPG 3576N16922E
 102313 =
```

Figure 47: The LST WND 016 remark denotes the last valid wind prior to splash at 16 meters. With no valid winds within 10 meters of splash, surface winds are coded as /////. In cases where ASPEN does not code a surface wind, the lowest valid wind measurement can be found as the fist group following the surface in the 21212 Section (in this example, at 994 mb (one millibar above the surface) winds of 270 at 22 knots).

Note that the 62626 remarks group is repeated at the end of the message as is the 61616 group (the line just above it) that includes the Mission ID & observation number. Other remarks dealing with wind are highlighted in Figure 48 on the following page. The Mean Boundary Layer Wind is the mean velocity over the bottom 500 meters of the sounding...in this case...280 at 28 knots. The Deep Layer Mean Wind is calculated through the entire depth of the sounding containing QC'd winds. In this case it was 265 at 77 knots in a layer from 994 mb up through 172 mb (the next six digit group after

DLM WND). Finally the WL150 group is the mean wind velocity of QC'd winds over the lowest 150 meters (275 at 23 knots) with the next group showing the height above the surface of the mid-point of that 150 meter layer (89 meters).

UZPA13 KWBC 262041 XXAA 70102 99357 11688 12858 99995 09037 //// 00538 ///// //// 92603 04230 29034 85285 01107 28036 70808 10958 26550 50530 29162 26578 40687 37962 26122 30881 41995 26621 25005 417// 27145 20155 453// 26639 88348 45374 26119 66172 26650 414// 31313 09608 81009 51515 10190 15346 61616 NOAA9 07WSW TRACK76 OB 16 62626 LST WND 016 MBL WND 28028 AEV 07483 LAST REPORT DLM WND 265 77 994172 WL150 27523 089 REL 3573N16884E 100949 SPG 3576N16922E 102313 =XXBB 70108 99357 11688 12858 00995 09037 11850 01107 22826 02712 33815 01956 44804 02158 55711 10357 66660 13564 77539 25975 88522 27362 99508 28763 11438 32776 22386 40162 33356 44772 44342 45576 55300 41995 66290 40599 77261 41798 88217 427// 99172 47964 21212 00995 ///// 11994 27022 22946 29033 33850 28036 44726 27042 55641 25568 66528 25566 77416 26121 88317 26113 99274 27141 11234 26647 22191 26630 33172 26650 31313 09608 81009 51515 10190 15346 61616 NOAA9 07WSW TRACK76 OB 16 62626 LST WND 016 MBL WND 28028 AEV 07483 LAST REPORT DLM WND 265 77 994172 WL150 27523 089 REL 3573N16884E 100949 SPG 3576N16922E 102313 =

Figure 48: Mean Boundary Layer (MBL WND), Deep Layer Mean (DLM WND) and Lowest 150 Meter (WL150) remarks

The items highlighted in Figure 49 below include the sonde release point and time (REL). This position (35.73N 168.84W) is given in decimal format rather than degrees and minutes. The following six digit group is the release time in UTC including seconds (10:09:49z). The splash point (SPG) and time follows the same format. AEV is the release number of the ASPEN software used to create the message. The LAST REPORT message is included to signify that this is the last observation of a mission (not including HDOBs which have their own separate numbering scheme). It is appended to the TEMPDROP by clicking the Last Report box on the COMM Tab. However, the remark needs to be manually edited by the FD before this last message can be transmitted. The procedure for manually editing fields in the TEMPDROP message is included in Section 7.9.

```
61616 NOAA9 07WSW TRACK76 OB 16
62626 LST WND 016 MBL WND 28028 AEV 07483 LAST REPORT DLM WND 265
77 994172 WL150 27523 089 REL 3573N16884E 100949 SPG 3576N16922E
102313 =
```

Figure 49: Remarks for Release Location and Time (REL), Splash Location and Time (SPG), ASPEN Version (AEV) and the LAST REPORT remark

There are remarks used during P-3 missions that specifically deal with hurricane penetrations. Figure 50 below is an example of a remark denoting the drop was made into the eastern eyewall of Hurricane Earl. The EYEWALL 090 remark signifies an azimuth of 090 out from the center of the storm. Note the 105 knot surface winds:

```
UZNT13 KWBC 021230
XXAA 52127 99302 70745 11604 99952 26200 10105 00938 ///// /////
92253 24600 12634 85996 21800 14635 70669 14800 17127 88999 77999
31313 09608 81209
51515 10167 06564
61616 NOAA2 WX07A EARL10 OB 16
62626 REL 3016N07447W 120917 SPG 3033N07457W 121453 WL150 11112 0
85 DLM WND 15122 951641 MBL WND 12130 EYEWALL 090=
XXBB 52128 99302 70745 11604 00952 26200 11944 25800 22677 13802
33668 13801 44651 12209 55641 11000
21212 00952 10105 11950 10600 22949 11088 33947 11104 44945 11615
55942 11602 66939 11130 77938 11133 88936 11627 99925 12634 11921
12643 22917 12646 33914 12631 44913 12641 55910 13147 66905 13150
77899 13144 88895 13633 99889 13630 11885 13623 22883 13628 33880
14127 44876 14134 55712 16634 66667 18613 77641 18622
31313 09608 81209
51515 10167 06564
61616 NOAA2 WX07A EARL10 OB 16
62626 REL 3016N07447W 120917 SPG 3033N07457W 121453 WL150 11112 0
85 DLM WND 15122 951641 MBL WND 12130 EYEWALL 090=
```

Figure 50: Eyewall penetration azimuth remark

These remarks are generated using dropdown menus (Environment and Azimuth in the 62626 Group) under the COMM tab as seen below in Figure 51.

<u>M</u> ain <u>R</u> aw <u>Q</u> C	XY Graph	Skew- <u>T</u>	Levels	<u>w</u> mo	<u>C</u> omm	<u>S</u> ummary]
		D20	<mark>100902_</mark>	<mark>120917_</mark>	P.1 10014	5059 Flight	: 4 Hurricane Earl,
- Identifiers						C	omms
Abbreviated Header —							
Abbreviated Header Ov	erride			Clear			
Correction Number							
-51515 Group							Com Port
Doubtful Heights 📃							Comm con
-61616 Group							Baud 960
Agency/Aircraft	NOAA2						
Mission Storm System	WX07A						
Mission ID	EARL10						
Observation Number	16						
ICAO id	KWBC 🔽						Send TEMPDROP me
-62626 Group							
Environment	EYEWALL	· Az	imuth 90	(E) 🔽			Clear
ATCF Identifier	EYE						
Retransmission of OB	EYEWALL RAINBAND						
Corrected Report	MXWNDBND	ort 📃					

Figure 51: Selection of the hurricane penetration remarks using the COMM tab

7.7 Using XY Graph Tab and Levels Tab

Most parameters measured by the sonde can be plotted on an X-Y graph with either pressure (the default) or time along the vertical axis. A good practice in quality checking all sonde data is to bring up the X-Y plot of Altitude versus Pressure (with pressure along the vertical axis) by selecting the Pres-Alt radio button on the XY Graph Tab:

Figure 52: XY Graph tab showing the traces for sonde Altitude vs Pressure

Since there is a predictable logarithmic increase in pressure as a sonde falls this plot should always look almost exactly as in Figure 52 above (forming an X where the green line is just pressure plotted against itself (so a perfectly straight line) with the orange line being a gently sloped convex curve of altitude in meters versus pressure. The FD should then plot time on the vertical axis by selecting the Time radio button:

Figure 53: Plot of Time vs Pressure

This will create another "X" shape of a gently sloping concave trace in green of Pressure versus Time crossed by a slightly curved convex trace in orange of Pressure versus Time. There should never be any deviation from this pattern. Any deviation is most often a clear indication of a serious problem in the sounding data. One rare exception is deployment of a P-3 sonde into the eyewall of an intense hurricane where updrafts can exceed the magnitude of the 10-15 m/s fall rate. With "upsondes" the instrument briefly stops falling or even rides the updraft upward for a few seconds. This would disrupt the "X" pattern shown in Figure 53 at the bottom of the previous page.

One of the most useful applications of the X-Y Tab is in confirming a fast fall. As mentioned in Section 7.1, following the progress of the sonde as it is deployed is the responsibility of the AVAPS Operator, however, it is important that the FD also be watching for abnormalities using the Remote AVAPS program (provided other Flight Director duties permit this as there are many instances where your attention may have to be focused elsewhere). If the neither the AVAPS Operator nor the FD are able to notice that a sonde is a fast fall as it is deployed, a backup sonde won't be available to cover the observation but there are techniques to ensure the resulting WMO TEMPDROP message (populated with bad data) is not transmitted off the aircraft. As mentioned in Section 7.5, ASPEN will normally flag the sounding with an alert pane that pops up on the Main Page as the D file is opened that says "This appears to be a fast fall sounding" or it may say "Unable to dynamically adjust winds. This appears to be a fast fall sounding". As mentioned in the same earlier section, a sounding duration considerably shorter than the typical 850 to 950 seconds seen in a standard G-IV drop is another clue.

Opening the X-Y Tab of ASPEN and selecting the Sats-Dz radio button will show the fall rate of the sonde in meters per second. You should see a relatively smooth curve that begins (from the G-IV) with a fall rate somewhere between 20-25 m/s at deployment which gradually slows to around 10 m/s at splashdown. In Figure 54 below, we see the wild fluctuations in fall rate (vertical velocity) which characterize a fast fall along with fall rates that begin at around 40 m/s and never get any slower than 15-20 m/s by splashdown. The data from this sounding CANNOT be used to create a TEMPDROP:

Figure 54: Telltale fluctuations in fall rate (vertical velocity) seen in a fast fall

The X-Y Tab is an excellent means of examining the temperature and humidity profile of a sounding and often better than the Skew T as an indicator of invalid data. The example seen in Figure 55 below is typical of a G-IV Winter Storm mission. This plot includes the flight level temperature and relative humidity. It is clear that both should have been selected to be ignored on the Main Screen. The flight level temperature is the uppermost green point that is connected to the remainder of the temperature trace by an unnatural straight line. The same is true for the RH shown in orange. In this sounding the tropopause is clearly evident at 314 mb. Note that RH in the stratosphere is extremely low (often below 5%) and that the tropopause is often characterized by a sharp discontinuity of both temp and humidity. There is often a discontinuity of either wind speed and/or direction there as well.

Figure 55: Mean Boundary Layer (MBL WND),

In Figure 56 below from a different Winter Storm mission, with the tropopause near 200 mb there was a pronounced wind max of 133 knots at 192 mb (note that the horizontal scale of the X-Y wind speed plot is in meters per second rather than knots).

In addition to the data being displayed graphically on the XY Graph Tab, each level of data compiled on the TEMPDROP message can also be examined individually using the Levels Tab. Figures 57 and 58 below show the upper portions (sonde deployment at 148 mb through 381.8 mb) and lower portions (578.2 mb to splash) of a sounding:

Ma	ain <u>R</u> aw	QC	XY Graph	Skew- <u>T</u>	Levels	<u>w</u> mo		mm	Sum	mary			
				D20	0120826_1	25007_	P.3 1	11174	5153	Hurrican	e 2012, 2012	0826N1 Gu	lfstream G-IV SP,
					Click o	n a lev	el to	disat	ole/en	able it.	Disabled L	evels are h	ighlighted in red.
^		Туре		Time (s)	Pres (mb)	Tdry	(C)	RH	(%)	Dir (deg) Spd (m/s)	Alt (m)	
0	62626 REL L	Location		-1.0	148.0								
1	Uppermost	Thermody	rnamic	-1.0	148.0	-66.3							
2	Uppermost \	Winds		-1.0	148.0					312.7	4.5		
з	Standard			2.5	150.0	-65.8				314.4	6.7	14274	
4	GDL Wind D	pirection		10.0	154.3					315.9	11.4		
5	GDL Wind S	peed		31.8	166.9					278.9	13.4		
6	GDL Wind D	virection		59.5	183.7					217.4	9.1		
7	Uppermost 7	Thermody	rnamic	71.3	191.1	-56.0		17.8					
8	Standard			85.3	200.0	-53.2		25.2		245.1	7.3	12477	
9	GDL Wind D	irection		86.0	200.4					245.5	7.2		
10	GDL Wind S	peed		106.8	213.7					238.0	5.1		
11	GDL Wind D	pirection		114.5	218.7					218.2	5.9		
12	GDL Wind D	pirection		122.5	223.9					226.2	5.7		
13	GDL Wind D	virection		138.8	234.7					193.0	6.6		
14	Standard			160.9	250.0	-39.9		40.9		179.4	6.5	10997	
15	GDL Wind D	pirection		162.3	251.0					178.2	6.6		
16	GDL Wind D	irection		170.8	257.0					157.0	6.9		
17	GDL Temper	ature		192.3	272.3	-34.9		52.9					
18	GDL Wind S	peed		214.8	288.7					130.6	8.2		
19	Standard			230.0	300.0	-29.7		62.9		126.2	12.4	9724	
20	GDL Wind D	virection		240.0	307.6					119.6	14.2		
21	GDL RH			266.3	327.8	-25.9		67.1					
22	GDL Wind S	peed		269.5	330.3					131.3	19.3		
23	GDL RH			307.8	360.1	-20.2		27.4					
24	GDL Temper	ature		334.3	381.8	-16.6		24.7					

Figure 57: Levels Tab showing data from launch down to 381.8 millibars

Ma	in	<u>R</u> aw	QC	XY Graph	Skew- <u>T</u>	Levels	<u>w</u> mo		mm	Sumr	mary			
					D20	0120826_1	25007_	P.3 :	11174	5153	Hurricane	2012, 2012	0826N1 Gu	<mark>lfstream G-IV S</mark> I
	1		T		Tax 5 (2)	Click of	n a leve	el to	disat	ole/en	able it.	Disabled L	evels are h	ighlighted in rec
33	GDL	RH	туре		Time (s)	578.2	1.5	(C)	69.0	(%)	Dir (deg)	Spa (m/s)	AIE (m)	
34	GDL	Temper	ature		570.8	597.6	34		72.6					
35	GDL	Wind F	irection		590.8	6173	0.1		7 210		118.9	19.5		
22	CDL	Tompor	at re		666 2	692.0	00		66 E		110.9	19.5		
27	Stor	- Temper adard	auare		674.0	700.0	0.9		60.5		129.0	16.4	2120	
37	Star	iuaru T			574.0	700.0	9.2		69.1		120.9	16.4	3100	
38	GDL	. iemper	ature		704.8	/33.3	9.8		90.0					
39	GDL	. Wind D	virection		712.5	742.2					139.5	21.2		
40	Star	ndard			807.3	850.0	18.2		76.5		135.5	18.9	1532	
41	Stat	ion Base	e Pressur	e	807.3	850.0	18.2		76.5					
42	GDL	. Wind S	ipeed		807.3	850.0					135.5	18.9		
43	GDL	. Wind S	peed		828.3	874.4					129.6	20.2		
44	GDL	. Wind S	peed		834.3	880.8					128.6	18.6		
45	Star	ndard			874.1	925.0	22.3		81.0		132.6	18.9	801	
46	GDL	. Wind S	peed		874.8	925.7					132.3	18.9		
47	GDL	. Wind S	ipeed		894.3	946.1					129.2	15.8		
48	626	26 Mear	n BL Wine	d	904.4	957.3					131.9	13.3	500	
49	GDL	. Wind S	peed		917.8	971.8					124.3	16.4		
50	GDL	. Wind S	peed		937.8	994.2					142.2	10.3		
51	Star	ndard			942.8	1000.0	25.8		86.2		145.4	11.9	114	
52	GDL	. Wind S	peed		943.3	1000.5					145.5	11.9		
53	626	26 150r	n Layer I	Mean Wind	944.8	1002.2					144.7	11.2	84	
54	626	26 SPG	Location		953.0	1011.8								
55	626	26 Deep	Layer M	1ean Wind	953.5	1012.4					132.7	14.8		
56	Surf	face Win	ıds		953.0	1013.0					150.1	11.1	10	
57	Surf	face The	rmodyna	amic	954.0	1013.0	27.0		86.7				0	

Figure 58: Levels Tab showing data from 578.2 millibars down to splash

Note in Figure 57 at the top of the previous page that the first three lines of the Levels tab refer to flight level data gathered by the aircraft at 148 mb. Each blue line represents a mandatory level. The first shown is 150 mb (reached 2.5 seconds after sonde deployment) where the temp was -65.8C, the winds were 314.4 degrees at 6.7 meters per second and the geopotential height was 14274 meters. It is important to understand that all those values are all calculated through interpolation between the flight level data and the first valid (quality checked) values obtained by the sonde after data stabilization several seconds below the 150 mb level. This is necessary to be able to populate models with 150 mb data or any other mandatory level which lies just below the sonde deployment altitude (which is often just above 700 mb when the P-3 is flying at 10,000 feet in a tropical cyclone).

Significant levels (to be coded as groups in the XXBB Section for temperature and in the 21212 Section for winds) are denoted as GDL (Greatest Departure from Linearity). There will always be a GDL line assigned to the first QC'd winds from the sonde (in this case at 10 seconds or 154.3 mb).

In Figure 57, the flight level RH was ignored by the operator (the most common situation in the G-IV). This means there is not a full line of QC'd temp and humidity data from the sonde until the Uppermost Thermodynamic line at 71.3 seconds and 191.1 mb. If the operator had elected to not ignore the flight level humidity, it would be included in the Levels tab (and therefore on the resulting TEMPDROP message). This would create a situation where there would always be a gap in thermodynamic data since it takes time for the sonde PTH data to stabilize. To define that layer, the Levels tab would look like Figure 59 below when FL temp and humidity is retained. Extra lines for Missing RH Top and Missing RH Bottom are added to define this layer:

Ma	in <u>R</u> aw	QC	XY Graph	Skew- <u>T</u>	Levels		omm <u>S</u> um	mary		
				D20	0120826_1	25007_P.3	11174515 3	Hurricane	2012, 2012	0826N1 Gul
					Click o	n a level to) disable/er	able it.	Disabled L	evels are hi
-		Туре		Time (s)	Pres (mb)	Tdry (C)	RH (%)	Dir (deg)	Spd (m/s)	Alt (m)
0	62626 REL	Locatior	٦	-1.0	148.0					
1	Missing RH 1	Гор		-1.0	148.0	-66.3	64.8			
2	Uppermost [*]	Thermo	dynamic	-1.0	148.0	-66.3	64.8			
3	Uppermost	Winds		-1.0	148.0			312.7	4.5	
4	Standard			2.5	150.0	-65.8		314.4	6.7	14274
5	GDL Wind D	Virection	1	10.0	154.3			315.9	11.4	
6	GDL Wind S	peed		31.8	166.9			278.9	13.4	
7	GDL Wind E	Direction	1	59.5	183.7			217.4	9.1	
8	Missing RH B	Bottom		74.8	193.3	-55.3	19.9			
9	GDL RH			74.8	193.3	-55.3	19.9			
10	Standard			85.3	200.0	-53.2	25.2	245.1	7.3	12477
11	GDL Wind E	Virection	1	86.0	200.4			245.5	7.2	
12	GDL Wind S	peed		106.8	213.7			238.0	5.1	

Figure 59: Levels tab showing a case where IGNORE was not selected for flight level humidity. This would generate a Group in the XXBB Section of the TEMPDROP message for 148 mb that included Dew Point Depression. The layer of "missing" RH shown is from 148 mb until the first valid sonde humidity measurements at 193.3 mb.

An important utility of the Levels tab allows the FD to disable a line by clicking on it. This will automatically remove that level from the resulting TEMPDROP message. When a line is selected to be disabled, it will be highlighted in red. To re-enable a line that has been disabled, simply click on it again. The red highlighting will disappear and the data from that level will again be included in the TEMPDROP message.

In Figure 60 below, if the FD determined that data from 235 to 275 mb was suspect, and should not be included in the TEMPDROP, it could be disabled using the Levels tab. The resulting change to the original message can be seen comparing Figure 61 with Figure 62 (showing resulting delections). These include deletion of the 250 mb standard level as well as deletion of the tropopause group along with deletion of significant levels in the XXBB Section at 257 and 271 mb and at 263 mb in the 21212 Section:

Ma	ain <u>R</u> aw <u>Q</u> C <u>X</u> Y Graph	Skew- <u>T</u>	Levels	<u>w</u> mo g	<u>C</u> omm	Summ	ary			
			D2011011	6_11041	0_P.4 09	930390	59 Winte	r Storms 20	011, 201101	16N G-IVSP, N49
			Click o	n a level t	to disab	ole/ena	ble it.	Disabled L	evels are hi	ghlighted in red.
^	Туре	Time (s)	Pres (mb)	Tdry (C)) RH	(%)	Dir (deg)	Spd (m/s)	Alt (m)	
0	Extrapolated Altitude	-1.0	150.0						13533	
1	62626 REL Location	-1.0	160.6							
2	Uppermost Winds	-1.0	160.6			2	272.7	81.0		
з	Uppermost Thermodynamic	-1.0	160.6	-54.9						
4	GDL Wind Speed	13.4	168.2			2	276.5	76.7		
5	Wind Shear Above	50.3	189.9			2	275.9	88.0	12017	
6	Standard	65.5	200.0	-49.0		2	274.2	84.3	11679	
7	Uppermost Thermodynamic	66.4	200.6	-48.9	3.3					
8	Maximim Wind	91.9	218.2			2	272.7	91.9	11103	
9	GDL Wind Speed	91.9	218.2			2	272.7	91.9		
10	GDL Temperature	111.4	232.4	-46.5	3.6					
11	Standard	134.5	250.0	-48.6	4.5	2	268.9	69.2	10204	
12	Wind Shear Below	135.3	250.6			2	268.7	68.6	10189	
13	GDL RH	143.4	256.8	-49.9	5.9					
14	GDL Wind Speed	151.9	263.5			2	261.4	57.2		
15	Tropopause	160.4	270.2	-51.9	33.8	2	257.3	56.0	9697	
16	GDL Temperature	161.4	271.0	-51.8	35.3					
17	GDL RH	187.4	292.4	-48.0	65.2					
18	Standard	196.7	300.0	-46.5	69.8	2	249.8	53.4	9013	
19	GDL Temperature	220.9	319.9	-42.4	75.8					
Г : -				074	سا م ما ما		ا امدما (

Figure 60: Data from 250 mb through 271 mb being deleted (in red)

UZPA13	KWBC 17	12059								
XXAA	66112	99389	11685	12888	99986	13407	11111	00621	11111	11111
92533	10202	19060	85234	06602	20053	70803	02105	22055	50541	17314
24071	40704	30530	25066	30901	46534	25104	25020	48776	27134	20168
491//	27664	88270	51959	25609	77218	27678	44612			
31313	09608	81104								
51515	10190	15353								
61616 1	NOAA9 06	5WSW TRA	ACK76	OB	11					
62626 1	LST WND	016 MBI	L WND 1	8048 AE	V 07483	DLM WN	D 24068	984161	WL	
150 180	037 090	REL 389	94N1684	6E 1104	09 SPG	3905N16	880E 11	1748		=
XXBB	66118	99389	11685	12888	00986	13407	11850	06602	22648	05109
33517	15517	44397	31130	55320	42527	66292	48139	77271	51959	88257
49973	99232	46578	11201	48978	22161	549//				
21212	00986	/////	11984	17530	22953	18554	33920	18561	44908	19057
55898	19568	66865	19561	77850	20053	88813	21064	99638	22050	11505
24072	22428	24058	33335	25600	44263	26111	55218	27678	66168	27649
Figure	61 · Origi	nal TFM) messad	ne prior t	to deletic	ons			

ENFOROR Message phot to deletions **ine on.** Onymai m

SCISEC #.# UZPA13 KWBC 172059 XXAA 66112 99389 11685 ///// ///// 25/// ///// 491// 4//12 61616 NOAA9 06WSW TRACK76 OB 11 62626 LST WND 016 MBL WND 18048 AEV 07483 DLM WND 24068 984161 WL 150 18037 090 REL 3894N16846E 110409 SPG 3905N16880E 111748 XXBB 99161 549// ///// 11984 66865 19561 24072 22428 24058 33335

Figure 62: Subsequent TEMPDROP after deletions showing the removal of data from the 250 mb Mandatory Level as well as removal of Groups at 257 mb and 271 mb in the XXBB Section, along with removal of a Group at 263 mb of the 21212 Section and removal of the Tropopause Group

7.8 Using the Synoptic Mapping Tool

Data from multiple sondes deployed throughout a mission can be examined in a "plan view" in a manner similar to upper air constant pressure charts (ie: a 500 mb chart). To open the Synoptic Map tool, click on the Globe Icon of the Toolbar. A map of the world will appear as shown in Figure 63 below along with a listing of D files recently processed by ASPEN in the lower right corner. Check the box next to the sounding for it to appear as a station plot.

Figure 63: Synoptic Mapping Tool pane as it first appears upon selection To leave the Synoptic Map screen and return back to the ASPEN Tabs go to File in the upper left corner and use the dropdown menu to return to any of the last several soundings you have processed:

Figure 64: Returning from Synoptic Map function back to ASPEN tabs

To zoom into the region where a mission is being flown, click and drag on the world map (ensuring that the Zoom radio button in the upper right corner under Mouse Behavior is selected):

Figure 65: With Zoom selected under Mouse Behavior click and drag to zoom in

Each mandatory level can be selected for display. Figure 66 on the following page shows surface data for a Winter Storm G-IV mission near Hawaii. The observations range from 2311z (surface pressure 1023.6 mb) to 0120z (1017.7 mb). Temperature & dew point are in the standard station model format:

Figure 66: Surface data

Each mandatory upper air level can be selected for display using the Station Level dropdown menu on the right side of the pane. Figure 67 below shows 300 mb data from the same mission. Note how well the location of the 300 mb trough axis is defined (between obs at 2342z and 2357z). As would be expected, the coldest 300 mb temps are found in the trough axis (a minimum of -44.0C) with warmer conditions further away from the axis (temp -33.2C at 0120z). Note there is more than 200 meters of geopotential height gradient across the observations.

Figure 67: 300 millibar data showing a well defined trough

SC/SEC #.# 7.9 Use of the COMM Tab to Generate Remarks and Manually Editing a TEMPDROP

As we have seen, in many cases, the process by which ASPEN compiles a TEMPDROP message can be altered along the way (such as flight level temp and or humidity being ignored). However, when automated ASPEN techniques cannot be employed, sometimes a group may need to be manually edited in the WMO Tab.

In Figure 68 below, the operator manually changes the 150 mb dew point depression from // to 22 degrees. First, select the group (it will become highlighted). Then press the MODIFY button. A "Modify Code Group" dialog box will appear. Type in the change to the dialog box then deselect it using the red X in the upper right corner of the box:

Main	Raw QC	XY Gra	oh Skew	-T Leve	els WMO	Comm	🛛 🗍 Summa	ry				
		-	D20	120826	130943 I	P.1 1224	55131 Hu	<mark>irricane 2</mark>	012, 20:	120826N1 Gul	fstream G-	I۷
Dele	te M	odify	Restore	e Inser	t Before	Insert a	after		Oria	inal groups: 1	45 Modif	fiec
UZNT1	3 KWBC 1	12055										
XXAA	76131	99241	70775	08047	99008	27235	13041	00069	26633	13044		
92755	22633	14048	85487	17002	15050	70129	09815	15536	50585	04745		
14522	40758	14556	15022	30970	28950	14015	25098	38758	17010	20247		
51961	20506	15427	665//	29015	88999	77999						
31313	09608	81309										
61616	NOAA9 1	909A IR	RENE	OB	30							
62626	MBL WND	13547	AEV 074	83 DLM	WND 150	29 007:	L48 WL15	0 13045	08			
3 REL	2410N07	752W 13	0942 SP	G 2420N	107758W	132501				=		
XXBB	76138	99241	70775	08047	00008	27225	11040		00007			
33902	21233	44850	17002	55736	12224	66	Modify Co	de Group		2 🔀		
01607	99562	00656	11551	00727	22524	029		un la constance da constance d	anda avai un	66511		
55485	05558	66480	06128	77455	08919	884	uer une new v	alue lor trie	coue group	1,000		
14947	22375	17738	33355	19760	44329	24159	55318	25939	66274	33158		
77236	42159	88193	54162	99148	671//							
21212	00008	13041	11989	13548	22968	14047	33935	14551	44890	14046		
55850	15050	66696	15036	77622	17036	88455	13026	99336	16517	11317		
14016	22280	14011	33233	17507	44160	24512	55155	27513	66148	29516		
31313	09608	81309										
61616	NOAA9 1	.909A TR	ENE	OB	30							
62626	MBL WND	13547	AEV 074	83 DLM	MND 150	29 007	148 WT.15	0 13045	08			
3 REL	2410N07	752M 12		G 2420M	2 100 107758¤	132501	210 00110	5 100 10		_		
	2410107	10200 10	UVAL JE	0 24200	00113000	TUCSOT				_		

Figure 68: Manually editing humidity data in the 150 mb Group of the XXAA Section

Main Raw	QC XY Gra	ph Skew	- <u>T</u> Leve	ls <u>W</u> MO	Comm	Summa	ry		
		D20:	120826_	130943_	P.1 1224	55131 Hu	<mark>irricane</mark> 2	012, 201	20826N1
Delete	Modify	Restore	Inser	t Before	Insert a	fter		Orig	inal group
UZNT13 KWB	C 112055								
XXAA 761	31 99241	70775	08047	99008	27235	13041	00069	26633	13044
92755 226	33 14048	85487	17002	15050	70129	09815	15536	50585	04745
14522 407	58 14556	15022	30970	28950	14015	25098	38758	17010	20247
51961 205	06 15427	66572	29015	88999	77999				
31313 096	08 81309								
61616 NOAA	9 1909A IF	RENE	OB	30					
62626 MBL	WND 13547	AEV 074	83 DLM	WND 150	29 0071	48 WL15	0 13045	08	
3 REL 2410	N07752W 13	80942 SP	G 2420N	107758W	132501				=
			a	(In a shirt!	and the second second	I.

Figure 69: After the change the modified group will become backlit with pink

7.10 Generation of Additional Products using ASPEN

Scientists flying with AOC will often ask for additional ASPEN products useful in additional post flight analysis. One of the products is the NOAA FRD file (commonly referred to as the "Fred" file). It is similar in layout to the D file, with a line of data generated for each 0.25 seconds of a sounding, but the data has first been run through the ASPEN QC filter. The FRD file can be automatically generated and saved each time a D file is processed using the QC Auto Save tab. At the top of the ASPEN application under the Tools dropdown menu select Options. Then under Option go to the QC Auto Save tab. This tab is shown in Figure 70 shown below. Create a folder somewhere on the local FD hard drive to save these additional ASPEN products then point to it under Auto Save Directory using the CHANGE button. Then check the Auto Save Enable box along with the desired products to automatically generate and save each time a D file is processed (checking the boxes under QC Output Formats and SkewT Output Formats):

Figure 70: To have FRD and SkewT products automatically generated by ASPEN when a D file is opened select the desired products and check the Auto Save Enable box

The FRD file is useful for researchers in that it provides the high resolution of a D file in a quality controlled format (discarding data collected prior to launch while the sonde is sitting in the tube and the lines of data after splash before it is terminated). ASPEN will code invalid or missing data in a FRD file with -999 to make it easy for researchers to discard it when writing scripts to automatically read them for analysis. The WMO TEMPDROP message in Figure 71 below is from a 2012 mission into Hurricane Isaac. The corresponding FRD file is shown in Figure 72 on the following page:

```
UZNT13 KWBC 281254

XXAA 78128 99274 70876 08177 99988 25805 19570 00606 //// ////

92581 22605 19077 85318 19814 21064 88999 77999

31313 09608 81225

61616 NOAA2 3009A ISAAC OB 20

62626 SPL 2747N08757W 1229 MBL WND 19077 AEV 30000 DLM WND 20066

988752 WL150 19072 083 REL 2741N08760W 122550 SPG 2747N08757W 122

905 =

XXBB 78128 99274 70876 08177 00988 25805 11850 19814 22764 17010

33752 14800

21212 00988 19570 11983 19067 22970 18577 33939 19081 44909 19574

55896 20067 66850 21064 77752 22054

31313 09608 81225

61616 NOAA2 3009A ISAAC OB 20

62626 SPL 2747N08757W 1229 MBL WND 19077 AEV 30000 DLM WND 20066

988752 WL150 19072 083 REL 2741N08760W 122550 SPG 2747N08757W 122

Figure 71: The low resolution data shown in a TEMPDROP message.
```

SCISEC #.#

The TEMPDROP message is designed for ingestion into global models as well as providing key details in shorthand to operational forecasters and therefore is coarse including only mandatory and significant levels of PTH and wind data. In the Hurricane Isaac example, a forecaster would be interested in the 70 knot surface wind as well as the 81 knot significant wind at 939 mb, the MBL Wind of 77 knots and WL150 wind of 72 knots but this message is not of sufficient detail for research purposes. The FRD file from the same sonde shown in Figure 72 below is initially filled with -999 as the wind and PTH data stabilizes through several seconds following deployment:

DROPWINDSONDE PROCESSING RECORD Sonde: 111755060 FDR file written by Aspen Version 3.1, 22 Apr 2013 16:46 UTC Aircraft: NOAA WP-3D, N42RF Date: 120828 Time: 122551 UTC Bias corrections: PR = 0.0 mb TE = 0.0 C RH = 0.0 % PRB = 0.0 mb Filters (LPF): PTH = Dyn RH correction = Estimated PR used = Dyn T correction = COMMENT: none, Good Drop

Date:	120828	Lat:	27.4:	LN	TA:	14.8	с	PS:	751.6	mb	WD:	219	deg
Time:	122551	Lon:	87.60	WC	TD:	14.8	С	GA:	2383	m	WS:	28.1	m/s
SID:	111755060)			RH:	100.0	8	Navai	d:	GP			

IX	t (s)	P (mb)	T (C)	RH (%)	Z (m)	WD	WS (m/s)	U (m/s)	V (m/s)	NS	WZ (m/s)	ZW (m)	FP	FT	FH	FW	LAT (N)	LON (E)
0001	0.0	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	10	-999.0	-999	0	0	0	0	27.412	-87.597
0002	0.3	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	10	-999.0	-999	0	0	0	0	-999.000	-999.000
0003	0.5	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	10	-999.0	-999	0	0	0	0	27.412	-87.597
0004	0.8	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	8	-999.0	-999	0	0	0	0	-999.000	-999.000
0005	1.0	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	9	-999.0	-999	0	0	0	0	27.411	-87.596
0006	1.3	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	7	-999.0	-999	0	0	0	0	-999.000	-999.000
0007	1.5	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	6	-999.0	-999	0	0	0	0	27.411	-87.596
0008	1.8	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	6	-999.0	-999	0	0	0	0	-999.000	-999.000
0009	2.0	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	5	-999.0	-999	0	0	0	0	27.411	-87.596
0010	2.3	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	5	-999.0	-999		0	0	0	-999.000	-999.000
0011	2.5	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	2	-999.0	-999		0	0	0	-999 000	-000 000
0012	3.0	-999 0	-999 00	-999.0	-999	-999	-999 00	-999.00	-999 00	2	-999 0	-999		0	0		27 411	-87 596
0014	3 3	-999 0	-999 00	-999 0	-999	-999	-999 00	-999.00	-999 00	é	-999 0	-999	ő	0	õ	õ	-999 000	-999 000
0015	3.5	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	6	-999.0	-999	ő	ő	õ	õ	27.412	-87.596
0016	3.8	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	7	-999.0	-999	ō	ō	ō	0	-999.000	-999.000
	~		<i>/</i> ! ¹	0044							0011	DTU			/ 11			
At 1	U Se	conas	s (line	0041)	valio	a wi	nd dat	a com	es in v	Nith	QCa	РІН	da	ta	(all	і ех	cept to	or
hum	idity		ina in	oftor	12	hoor	de (he	ainnir		lin	~ ^ ^ ^	21.			`		•	
nun	nunty) 0011	ing in	anei	10 30		ius (be	SAULU	ig witt		e 000.	5).		_	_			
0038	9.3	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	10	-999.0	-999	0	0	0	0	-999.000	-999.000
0039	9.5	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	10	-999.0	-999	0	0	0	0	27.413	-87.595
0040	9.8	-999.0	-999.00	-999.0	-999	-999	-999.00	-999.00	-999.00	10	-999.0	-999	0	0	0	0	-999.000	-999.000
0041	10.0	-999.0	-999.00	-999.0	-999	215	29.32	16.64	24.14	10	-999.0	-999			0	0	27.413	-87.595
0042	10.5	-999.0	-999.00	-999.0	-999	210	29.39	16.65	24.22	10	-999.0	-999					- 333.000	-97 595
0043	10.5	-999 0	-999 00	-999 0	-999	214	29.52	16.65	24.25	10	-999 0	-999	ŏ	õ	0	ő	-999 000	-999 000
0045	11 0	-999 0	-999 00	-999 0	-999	214	29.59	16 66	24 45	10	-999 0	-999	ŏ	ő	ő	õ	27 414	-87 595
0046	11.3	-999.0	-999.00	-999.0	-999	214	29.65	16.67	24.53	10	-999.0	-999	ō	ō	ō	ō	-999.000	-999.000
0047	11.5	-999.0	-999.00	-999.0	-999	214	29.72	16.67	24.60	10	-999.0	-999	0	0	0	0	27.414	-87.595
0048	11.8	-999.0	-999.00	-999.0	-999	214	29.78	16.67	24.67	10	-999.0	-999	0	0	0	0	-999.000	-999.000
0049	12.0	-999.0	-999.00	-999.0	-999	214	29.83	16.67	24.75	10	-999.0	-999	0	0	0	0	27.414	-87.595
0050	12.3	-999.0	-999.00	-999.0	-999	214	29.89	16.66	24.81	10	-999.0	-999	0	0	0	0	-999.000	-999.000
0051	12.5	-999.0	-999.00	-999.0	-999	214	29.94	16.65	24.88	10	-999.0	-999	0	0	0	0	27.414	-87.594
0052	12.8	-999.0	-999.00	-999.0	-999	214	29.98	16.63	24.94	10	-999.0	-999	0	0	0	0	-999.000	-999.000
0053	13.0	764.4	17.09	-999.0	2232	213	30.18	16.47	25.29	10	-11.8	2232	0	0	0	0	27.414	-87.594
0054	13.3	-999.0	-999.00	-999.0	-999	213	30.20	16.43	25.35	10	-999.0	-999	0	0	0	0	-999.000	-999.000
0055	13.5	764.9	17.09	-999.0	2226	213	30.22	16.37	25.39	10	-12.0	2226	0	0	0	0	27.414	-87.594
0056	13.8	-999.0	-999.00	-999.0	-999	213	30.22	16.32	25.44	10	-999.0	-999	0	0	0	0	-999.000	-999.000
0057	14.0	765.5	17.08	-999.0	2220	213	30.23	16.26	25.49	10	-12.1	2220	0	0	0	0	27.414	-87.594
0058	14.3	-999.0	-999.00	-999.0	-999	212	30.23	16.19	25.53	10	-999.0	-999	0	0	0	0	-999.000	-999.000
0059	14.5	766.0	17.07	-999.0	2214	212	30.23	16.13	25.57	10	-12.3	2214	0	0	0	0	27.415	-87.594
0060	14.8	-999.0	-999.00	-999.0	-999	212	30.23	16.06	25.62	10	-999.0	-999	0	0	0	0	-999.000	-999.000
0061	15.0	/66.6	17.06	-999.0	2207	212	30.24	15.99	25.66	10	-12.3	2207			0		27.415	-87.594
0062	15.5	767 2	17 04	-999 0	2201	212	30.25	15.92	25.71	10	-12 4	2201			0		27 415	-97 594
T I		-l						(1:	704)						. Č c	<u>,</u>	4	
i ne	sono	be sp	lasnec	atis	15.25	sec	conas	(line u	781) V	vith	a raw	pres	sur	ec	DT S	188	.1 mb	and
the l	last (b'CC	winds	a dua	rter s	seco	ond ea	rlier of	[:] 194 c	lea	rees a	t 35.7	71 r	n/s	S:			
0766	191.3	-999 0	-999 00	-999 0	-999	190	34 95	6 13	34 41	10	-999 0	-999		0	0	0	-999 000	-999 000
0767	191 5	984 4	25 58	97.0	33	190	35 10	6 19	34 55	10	-9.7	33	0	0	õ	õ	27 466	-87 572
0768	191 8	-999 0	-999 00	-999 0	-999	190	35 31	6 27	34 75	10	-999 0	-999	0	0	0	0	-999 000	-999 000
0769	192 0	985 0	25 62	96.9	28	190	35 55	6 40	34 97	10	-9.5	28	0	0	0	0	27 466	-87 572
0770	192.3	-999 0	-999 00	-999 0	-999	191	35 80	6.57	35 19	9	-999 0	-999	0	0	0	0	-999 000	-999 000
0771	192 5	985 5	25 66	96.8	23	-999	-999 00	-999.00	-999.00	10	-9.3	23	ő	0	õ	0	27 466	-87.572
0772	192.8	-999.0	-999.00	-999.0	-999	191	36.21	7.12	35.50	10	-999.0	-999	ŏ	õ	õ	õ	-999.000	-999.000
0773	193.0	986.0	25.70	96.8	19	192	36.32	7.49	35.54	10	-9.2	19	ŏ	õ	õ	õ	27.466	-87.572
0774	193.3	-999.0	-999.00	-999.0	-999	193	36.38	7.92	35.51	9	-999.0	-999	õ	0	õ	0	-999.000	-999.000
0775	193.5	986.5	25.74	96.8	15	193	36.37	8.36	35.40	10	-9.0	15	õ	õ	õ	ō	27.466	-87.572
0776	193.8	-999.0	-999.00	-999.0	-999	194	36.29	8.77	35.22	10	-999.0	-999	õ	0	ō	0	-999.000	-999.000
0777	194.0	986.9	25.77	96.9	11	195	36.16	9.15	34.98	10	-9.0	11	0	ō	õ	0	27.467	-87.572
0778	194.3	-999.0	-999.00	-999.0	-999	195	35.96	9.48	34.69	10	-999.0	-999	0	0	0	0	-999.000	-999.000
0779	194.5	987.3	25.81	97.1	7	196	35.73	9.77	34.37	10	-8.9	7	0	0	0	0	27.467	-87.572
0780	194.8	-999.0	-999.00	-999.0	-999	194	35.71	8.88	34.59	10	-999.0	-999	0	0	0	0	-999.000	-999.000
0781	195.3	988.1	25.83	97.1	0	-999	-999.00	-999.00	-999.00	-999	-999.0	0	0	0	0	0	-999.000	-999.000
1																		

Figure 72: Portions of the FRD file corresponding to the sounding shown in Figure 71

The EOL file is another high resolution QC'd research product that can be autogenerated by ASPEN and is similar in format to the FRD file:

Data Type/Direction:	AVAPS SOUNDING DATA, Channel 7/Descending
File Format/Version:	EOL Sounding Format/1.1
Project Name/Platform:	Hurricane Sandy, 20121027H1/NOAA WP-3D, N42RF
Launch Site:	
Launch Location (lon, lat, alt):	77 10.84'W -77.180700, 29 11.96'N 29.199400, 3599.30
UTC Launch Time (y,m,d,h,m,s):	2012, 10, 27, 10:18:47
Sonde Id/Sonde Type:	111925005/
Reference Launch Data Source/Time:	IWGADTS Format (IWG1)/10:18:47
System Operator/Comments:	tmr/fast fall for about 250mb then slowed, Fast Fall
Post Processing Comments:	Aspen Version 3.1; Created on 27 Oct 2012 10:36 UTC; Configuration editsonde
1	

´ _			TITC		Deser	Term	Decemb	DU	The stand	The stand	Manual	Die	47	CD-31+	T en	Tet	CDCNIE
1	Time		010		Press	Temp	Dewpt	Rn	Owind	VWING	wspa	DIL	42	Georoait	LON	Lat	GPSAIL
	sec	hh	mm	33	mb	С	С	8	m/s	m/s	m/s	deg	m/s	m	deg	deg	m
	-1.00	10	18	46.00	640.15	7.85	7.85	100.00	-15.18	-12.50	19.66	50.53	-999.00	3583.73	-77.180700	29.199400	3599.30
	0.01	10	18	47.01	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-77.181341	29.199923	3538.45
	0.26	10	18	47.26	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.000000	-999.000000	-999.00
	0.51	10	18	47.51	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-77.180969	29.199531	3539.72
	0.76	10	18	47.76	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.000000	-999.000000	-999.00
	1.01	10	18	48.01	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-77.180723	29.199242	3542.74
	1.26	10	18	48.26	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.000000	-999.000000	-999.00
	1.51	10	18	48.51	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-77.180850	29.199228	3540.95
	1.76	10	18	48.76	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.000000	-999.000000	-999.00
	2.01	10	18	49.01	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-77.180950	29.199184	3536.78
258	.01 1	0 2	3 5	.01	965.26	24.43	23.67	95.45	-13.15	-25.51	28.69	27.27	-12.37	65.54	-77.222064	29.147456	68.25
258	.26 1	2:	35	.26 -	999.00 -	999.00 -	999.00 -	999.00	-13.12	-25.30	28.50	27.40	-999.00	-999.00	-999.000000	-999.000000	-999.00
258	.51 1	2:	3 5	.51	965.93	24.46	23.72	95.57	-13.06	-25.10	28.29	27.50	-12.38	59.41	-77.222133	29.147337	62.15
258	.76 1	2	3 5	.76 -	999.00 -	999.00 -	999.00 -	999.00	-13.03	-24.90	28.10	27.62	-999.00	-999.00	-999.000000	-999.000000	-999.00
259	.01 1	2	36	.01	966.60	24.49	23.76	95.63 -	-999.00 ·	-999.00	-999.00	-999.00	-12.40	53.32	-77.222204	29.147219	56.09
259	.26 1	2	36	.26 -	999.00 -	999.00 -	999.00 -	999.00	-12.89	-24.46	27.65	27.79	-999.00	-999.00	-999.000000	-999.000000	-999.00

259.26 1	0 23	6.26	-999.00	-999.00	-999.00	-999.00	-12.89	-24.46	27.65	27.79	-999.00	-999.00	-999.000000	-999.000000	-999.00
259.51 1	0 23	6.51	967.28	24.53	23.80	95.64	-12.77	-24.22	27.38	27.80	-12.43	47.16	-77.222276	29.147103	49.92
259.76 1	0 23	6.76	-999.00	-999.00	-999.00	-999.00	-12.58	-23.95	27.05	27.71	-999.00	-999.00	-999.000000	-999.000000	-999.00
260.01 1	0 23	7.01	967.97	24.56	23.83	95.59	-12.33	-23.67	26.69	27.52	-12.46	40.90	-77.222347	29.146989	43.49
260.26 1	0 23	7.26	-999.00	-999.00	-999.00	-999.00	-12.01	-23.38	26.28	27.19	-999.00	-999.00	-999.000000	-999.000000	-999.00
260.51 1	0 23	7.51	968.66	24.60	23.85	95.49	-11.61	-23.08	25.84	26.71	-12.48	34.53	-77.222415	29.146878	37.17
260.76 1	0 23	7.76	-999.00	-999.00	-999.00	-999.00	-11.17	-22.80	25.39	26.10	-999.00	-999.00	-999.000000	-999.000000	-999.00
261.01 1	0 23	8.01	969.37	24.64	23.87	95.37	-999.00	-999.00	-999.00	-999.00	-12.49	28.09	-77.222479	29.146771	30.77
261.26 1	0 23	8.26	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.000000	-999.000000	-999.00
261.51 1	0 23	8.51	970.07	24.68	23.89	95.24	-9.61	-22.17	24.16	23.44	-12.48	21.72	-77.222539	29.146665	24.36
261.76 1	0 23	8.76	-999.00	-999.00	-999.00	-999.00	-9.08	-22.09	23.88	22.34	-999.00	-999.00	-999.000000	-999.000000	-999.00
262.01 1	0 23	9.01	970.75	24.72	23.90	95.10	-8.55	-22.08	23.68	21.18	-12.46	15.59	-77.222593	29.146562	18.18
262.26 1	0 23	9.26	-999.00	-999.00	-999.00	-999.00	-8.05	-22.11	23.53	20.01	-999.00	-999.00	-999.000000	-999.000000	-999.00
262.51 1	0 23	9.51	971.40	24.76	-999.00	-999.00	-7.56	-22.14	23.39	18.85	-12.39	9.68	-77.222644	29.146459	11.96
262.76 1	0 23	9.76	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.00	-999.000000	-999.000000	-999.00
263.30 1	0 23	10.30	972.46	24.78	23.93	94.89	-999.00	-999.00	-999.00	-999.00	-999.00	0.00	-999.000000	-999.000000	-999.00

Figure 73: Portions of an example EOL file

Similarly, the CLASS or .cls file is another 0.25 resolution QC'd file laid out in tabular form. The principal difference between this format and that of the FRD or EOL files is that the sounding is described from the bottom up (the first line is the splash):

Data T Project Launch GMT Lau Sonde : / System Post P: /	ype: t ID: Site T Locati unch Tin Id: Operat	ype/Si on (lo me (y, or/Com ng Com	te ID: n,lat,a m,d,h,r ments: ments:	alt): m,s):	AVAP Hurr NOAA 87 3 2012 1117 crq, Aspe	S SOUNI icane 2 .WP-3D, 5.80'W, , 08, 2 55060 none, (n Vers:	DING D2 2012, 2 , N42RE , 27 24 28, 12: Good D2 Lon 3.1	ATA, C 201208 7 4.71'N 25:51 cop L; Cre	hannel 28H1 , -87.5 ated on	2 9670 27.4 . 22 Apr :	41190 230 2013 19:3	80 37 UTC				,				
Time	Press	Temp	Dewpt	RH	Uwind	Vwind	Wspd	Dir	dZ	Lon	Lat	Rng	Az	Alt	Qp	Qt C	Qh	Qu	Qv m(a	Quv
195.3	988.1	25.8	25.4	97.1	999.0	999.0	999.0	999.0	99.0	999.000	999.000	999.0	999.0	0.0	99.0	99.0	99.0	99.0	99.0	99.0
194.8	9999.0	999.0	999.0	999.0	8.9	34.6	35.7	194.4	99.0	999.000	999.000	999.0	999.0	99999.0	99.0	99.0	99.0	99.0	99.0	99.0
194.5	987.3	25.8	25.3	97.1	9.8	34.4	35.7	195.9	-8.9	-87.572	27.467	999.0	999.0	6.8	99.0	99.0	99.0	99.0	99.0	99.0
194.3	9999.0	999.0	999.0	999.0	9.5	34.7	36.0	195.3	99.0	999.000	999.000	999.0	999.0	99999.0	99.0	99.0	99.0	99.0	99.0	99.0
194.0	986.9	25.8	25.3	96.9	9.2	35.0	36.2	194.7	-9.0	-87.572	27.467	999.0	999.0	10.6	99.0	99.0	99.0	99.0	99.0	99.0
193.8	9999.0	999.0	999.0	999.0	8.8	35.2	36.3	194.0	99.0	999.000	999.000	999.0	999.0	99999.0	99.0	99.0	99.0	99.0	99.0	99.0
193.5	986.5	25.7	25.2	96.8	8.4	35.4	36.4	193.3	-9.0	-87.572	27.466	999.0	999.0	14.7	99.0	99.0	99.0	99.0	99.0	99.0
193.3	9999.0	999.0	999.0	999.0	7.9	35.5	36.4	192.6	99.0	999.000	999.000	999.0	999.0	99999.0	99.0	99.0	99.0	99.0	99.0	99.0
193.0	986.0	25.7	25.2	96.8	7.5	35.5	36.3	191.9	-9.2	-87.572	27.466	999.0	999.0	18.9	99.0	99.0	99.0	99.0	99.0	99.0
192.8	9999.0	999.0	999.0	999.0	7.1	35.5	36.2	191.3	99.0	999.000	999.000	999.0	999.0	99999.0	99.0	99.0	99.0	99.0	99.0	99.0
192.5	985.5	25.7	25.1	96.8	999.0	999.0	999.0	999.0	-9.3	-87.572	27.466	999.0	999.0	23.4	99.0	99.0	99.0	99.0	99.0	99.0
192.3	9999.0	999.0	999.0	999.0	6.6	35.2	35.8	190.6	99.0	999.000	999.000	999.0	999.0	99999.0	99.0	99.0	99.0	99.0	99.0	99.0
192.0	985.0	25.6	25.1	96.9	6.4	35.0	35.6	190.4	-9.5	-87.572	27.466	999.0	999.0	28.2	99.0	99.0	99.0	99.0	99.0	99.0
191.8	9999.0	999.0	999.0	999.0	6.3	34.7	35.3	190.2	99.0	999.000	999.000	999.0	999.0	99999.0	99.0	99.0	99.0	99.0	99.0	99.0
191.5	984.4	25.6	25.1	97.0	6.2	34.6	35.1	190.2	-9.7	-87.572	27.466	999.0	999.0	33.2	99.0	99.0	99.0	99.0	99.0	99.0
191.3	9999.0	999.0	999.0	999.0	6.1	34.4	35.0	190.1	99.0	999.000	999.000	999.0	999.0	99999.0	99.0	99.0	99.0	99.0	99.0	99.0
191.0	983.8	25.5	25.1	97.2	999.0	999.0	999.0	999.0	-9.9	-87.572	27.466	999.0	999.0	38.2	99.0	99.0	99.0	99.0	99.0	99.0
190.8	9999.0	999.0	999.0	999.0	6.0	34.3	34.8	190.0	99.0	999.000	999.000	999.0	999.0	99999.0	99.0	99.0	99.0	99.0	99.0	99.0
190.5	983.3	25.5	25.1	97.4	6.0	34.2	34.8	189.9	-10.0	-87.572	27.466	999.0	999.0	43.3	99.0	99.0	99.0	99.0	99.0	99.0
190.3	9999.0	999.0	999.0	999.0	6.0	34.2	34.7	189.9	99.0	999.000	999.000	999.0	999.0	99999.0	99.0	99.0	99.0	99.0	99.0	99.0
190.0	982.7	25.5	25.0	97.5	6.0	34.2	34.8	189.9	-10.2	-87.572	27.465	999.0	999.0	48.5	99.0	99.0	99.0	99.0	99.0	99.0
		L A .							001											

Figure 74: A portion of an example CLASS file

The .csv file is yet another high resolution sounding product that is generated as a Comma Separated file. There are also options on the QC Auto Save tab to generate and save SkewT diagrams in either .png, .jpg or .svg formats.

APPENDIX A – WMO TEMPDROP MESSAGE CODE (see following pages for key) UZNT13 KNHC 061851

XXAA 56185 99251 70786 08158 99016 26444 18501 00140 26247 07004 92827 22856 10509 85560 17834 07510 70200 09045 07012 50591 05532 07016 88999 77999

61616 AF968 0204A BONNIE OB 04

62626 RAINBAND SPL 2635N08996W LST WND 001 MBL WND 04010 XXBB 56188 99251 70786 08158 00016 26444 11005 25841 2291 26657 33860 18233 44719 10657 55679 07023 66624 03656 77555 01917 88541 02556 99523 11497 05927

21212 00016 18501 11983 07510 22959 10010 33865 09511

44787 06510 55719 08011 66695 06512 77646 08512 88597 07011 99570 03511 11538 08014 22523 08516 33497 07016

31313 09608 81828

51515 10166 02050

61616 AF968 0204A BONNIE OB 04

62626 RAINBAND SPL 2635N08996W LST WND 001 MBL WND 04010

Date/Time Group: YYGGId

• Identifier: YY – Date Group, Identifier: GG – Time Group, Identifier: Id - The highest mandatory level for which wind is available

LATTITUDE: 99LaLaLa

• Identifier: 99 – Indicator for data on position, Identifier: $L_aL_aL_a$ – Latitude in tenths of degrees LONGITUDE: $Q_cL_oL_oL_oL_o$

• Identifier: Q_c – The octant of the globe, Identifier: $L_oL_oL_oL_o-L_o$ – Longitude in tenths of degrees MARSDEN SQUARE: MMMU_{la}U_{lo}

. Identifier and explain: MMM – Marsden square, Identifier and explain: $U_{la}U_{lo}$ – Units SEA LEVEL PRESSURE: 99P₀P₀P₀P₀ T₀T₀T₀D₀ d₀d₀d₀f₀f₀

- Identifier: 99 Indicator for data at the surface level follows
- Identifier: P_oP_oP_o Pressure of specified levels in whole millibar (thousands digit omitted)
- Identifier: T_oT_oT_o Tens and digits of air temperature (not rounded off) in degrees Celsius, at specified levels beginning with surface
- Identifier: D_0D_0 Dewpoint depression at standard isobaric surfaces beginning with surface level

NOTE

When the depression is 4.9C or less encode the units and tenths digits of the depression. Encode depressions of 5.0 through 5.4C as 50. Encode depressions of 5.5C through 5.9C as 56. Dew point repressions of 6.0 and above are encoded in tens and units with 50 added. Dew point depressions for relative humidities less then 20% are encoded as 80. When air temperature is below -40C report D_aD_a as // Identifier: d_od_o - True direction from which the wind is blowing rounded to nearest 5 degrees. Report hundreds and tens digits. The unit (0 and 5) is added to the hundreds digit of wind.

• Identifier: f_of_of_o – Wind speed in knots. Hundreds digit is sum of hundreds digit of speed and unit digit of direction. Example: 295 degrees at 125 knots is encoded as 29625

STANDARD ISOBARIC SURFACES: P₁P₁h₁h₁h₁ T₁T₁T₁D₁D₁ d₁d₁f₁f₁f₁

- Identifier: P_1P_1 Pressure of standard isobaric surfaces in units of tens of millibars. (1000mbs = 00, 925mbs 92, 850mbs = 85, 700mbs = 70, 500mbs = 50, 400mbs = 40, 300mbs = 30, 250mbs = 25)
- Identifier: h₁h₁h₁ Heights of the standard pressure level in geopotential meters or decameters above the surface. Encoded in decameters at and above 500mbs omitting, if necessary, the thousands or tens of thousands digits. Add 500 to hhh for negative 1000mb or 925mb heights. Report 1000mb group as 00/// ///// when pressure is less than 950mbs.

DATA FOR TROPOPAUSE LEVELS: 88P_nP_nP_n T_nT_nT_nD_nD_n d_nd_nf_nf_nf_n

- Identifier: 88 Indicator for Tropopause level follows
- Identifier: $P_nP_nP_n P$ ressure at the tropopause level reported in whole millibars. Report 88 $P_nP_nP_n$ as 88999 when tropopause is not observed
- Identifier: $T_n T_n T_n D_n D_n Same temperature/dew point encoding procedures apply$
- Identifier: d_nd_nf_nf_n Same wind encoding procedures apply

MAXIMUM WIND DATA: 77P_nP_nP_n d_nd_nf_nf_nf_n 4v_bv_bv_av_a

- Identifier: 77 Indicator that data for maximum wind level and for vertical wind shear follow when
 max wind does not coincide at flight. If maximum wind level coincides with flight level encode 66
- Identifier: $P_nP_nP_n$ Pressure at maximum wind level in whole millibars
- Identifier: $d_n d_n f_n f_n f_n Same wind encoding procedures apply$
- Identifier: 4 Data for vertical wind shear follow
- Identifier: v_bv_b Absolute value of vector difference between max wind and wind 3000 feet BELOW the level of max wind, reported to the nearest knot. Use "//" if missing and a 4 is reported. A vector difference of 99 knots or more is reported with the code figure "99".
- Identifier: v_av_a Absolute value of vector difference between max wind and wind 3000 feet ABOVE the level of max wind, reported to the nearest knot. Use "//" if missing and a 4 is reported. A vector difference of 99 knots or more is reported with the code figure "99".

AIRCRAFT AND MISSION IDENTIFICATION: 61616 AFXXX XXXXX XXXXX OB X KXXX

- Identifier: 61616 Aircraft and mission identification data follows
- Identifier: AFXXX XXXX XXXXX: Mission ID
- Identifier: OB 04 The observation number as transmitted from the aircraft.

NATIONALLY DEVELOPED CODES: 62626

Identifier: 62626 – This is the remarks section. Only the remarks: EYE EYEWALL XXX (eyewall
will be followed by the radian to the eye center procured from the ARWO), or RAINBAND, if
release was made in a feeder band. The splash location will be recorded automatically by computer.
Followed by last wind height in meters and the mean boundary layer wind with degrees to the
nearest five-degree and knots.

PART BRAVO (B)

- XXBB Identifier for a temp drop code
- The following 6 groups same as in PART ALPHA: Date/Time and location and SLP

SIGNIFICANT ISOBARIC LEVELS: nonoPoPoPo ToToToDoDo

- Identifier: nono Number of level starting with surface level. Only surface will be numbered as "00".
 When a standard level is also selected as significant, repeat the level.
- Identifier: $P_0P_0P_0$ Pressure at specified levels in whole millibars.
- Identifier: $T_0T_0T_0D_0D_0$ Same temperature/dew point encoding applies.

SIGNIFICANT WIND LEVELS: 21212 nnPPP ddfff

- Identifier: n_0n_0 Number of level starting with surface level. Only surface will be numbered as "00". When a standard level is also selected as significant, repeat the level.
- Identifier: $d_1d_1f_1f_1 Same$ wind encoding procedures apply to all levels

SOUNDING SYSTEM INDICATION, RADIOSONDE/SYSTEM STATUS, LAUNCH TIME: 31313 srr_ar_as_as_a 8GGgg

ADDITIONAL DATA GROUPS: 51515 101XX 0PnPnPn

- Identifier: 51515 Additional data in regional code follow
- Identifier: 10166 Geopotential data are doubtful between the following levels 0P_nP_nP_nP_n.
- Identifier: $10167 Temperature data are doubtful between the following levels <math>0P_nP_nP_nP_n$
- Identifier: 10190 Extrapolated altitude data follows:
- a. When the sounding begins within 25mbs below a standard surface, the height of the surface is reported in the format 10190 P_nP_nh_nh_nh_n. The temperature group is not reported
- b. When the sounding does not reach surface, but terminates within 25mbs of a standard surface, the height of the standard surface is reported in Part A of the code in standard format and also at the end of Part A and Part B of the code in the format as 10190 P_nP_nh_nh_nh_n.
- Identifier: 10191 Extrapolated surface pressure preceds. Extrapolated surface pressure is only reported when the termination occurs between 850mbs and the surface. Surface pressure is reported in Part A as 99P_oP_oP_o ///// and in Part B as 00P_oP_oP_o /////. When surface pressure is extrapolated the 10191 group is the last additional data group reported in Part B.

SECOND EXAMPLE:

```
UZNT13 KNHC 032223
      <u>53223 99397 70727 15292 99012 04636 04516</u> 00098 03829 04016
XXAA
                    Ć
                           D
                                             G
        A
             B
                                 E
                                       F
92728 01649 32008 85404 02918 29021 70940 03188 28044 50554 15174
27068 40719 27361 28594 30921 383// 27147 88999 66298 27147 4////
                                             H
                                                       I
                                                                J
61616 AF866 WSWSA TRACK04 OB 02
                 L
  K
62626 MBL WND 03515 AEV 20108 DLM WND 28536 012359 WL150 04516 07
                                         P
 M
            N
                         0
                                                            0
5 =
XXBB
      53228 99397 70727 15292 00012 04636 11978 02224 22970 02660
                                 S
                                       T
          R
33938 01231 44920 01456 55850 02918 66804 06124 77795 01785 88707
02793 99682 04184 11651 07360 22634 07186 33623 06586 44591 09382
55567 11764 66557 11947 77535 12359 88514 13375 99455 21572 11425
23761 22400 27361 33371 29936 44357 31356 55329 339// 66298 38535
21212 00012 04516 11980 04016 22970 02518 33944 02010 44933 34006
      v
              W
55922 31509 66901 28507 77889 27010 88850 29021 99770 29028 11723
27042 22693 28044 33536 27073 44496 27068 55445 29083 66385 28598
77298 27147
                                                \mathbb{Z}_{q}
                                  1. 5.
31313 09608 82209
       Y
              Ż
61616 AF866 WSWSA TRACK04 OB 02
62626 MBL WND 03515 AEV 20108 DLM WND 28536 012359 WL150 04516 07
5 = 11.200 (the sharp) a ...
```

SCISEC #.# (53) Day of the Month, When wind data are included 50 is added to the day A: (22) Actual time of the observation, to the nearest whole hour (GMT) (2) Indicator used to specify the highest millibar level with wind data (99) Indicator for data on position follow (397) Latitude, in tenths or a degree B : e (7) Quadrant of the globe (0727) Longitude, in tenths of a degree C: (152) The number of the marsden square for AC position at the time of the Drop D: (9) Unit digit for latitude for verification purposes (2) Unit digit for longitude for verification purposes (99) Indicator for data for surface level follow E: (012) Pressure of specified levels in whole millibars thousands digit omitted. Above the surface, Pressure of standard isobaric surfaces is in tens of millibars (04) Tens and units digit of air temp. in degrees C, at previously specified levels F: (6) Approximate tenths value of the air temp. Even = Positive, Odd = negative (36) Dew-point depression in units and tenths. DP dep. of 6C and above are encoded in tens and units with 50 added. DP dep. for RH < 20% are encoded as 80. (04) True dir. from which whd is blowing rnded to nearest 5 deg. in hundreds & tens G: (516) Wind speed in knots. Hundreds digit is sum of hundreds digit of speed and the unit digit of direction. i.e. 295 deg at 125kts encoded as 29625 (88) Indicator for data for tropopause level follow H: (999) Pressure at the trop. Lvl reported in whole mb followed by T, Td Dep., True Dir. and WS. 88999 indicator that trop. Data have not been observed (66) Indicator that data for max wnd for vert. Wnd shear follow when max wnd occurs I: At figt level 77 indicates max whd lvl does not coincide with the flight level (298) Pressure at max wnd level in whole millibars (27147) True wind Direction and wind speed in knots (4///) Data for vert wnd shear follow; consult OI 15-25 for shear values, if needed J: (61616) Indicator preceding a character string containing the wx mission id & ob # K: L: (AF866) AC Tail # (WSWSA TRACK04 OB 02) Weather mission/track and drop obs # (62626) Indicator preceding a specific sonde or mission related remarks. Last remark M : Would be placed here after indicator N: (MBL WND 03515) The mean wnd in the lowest 150m of the sounding (AEV 20108) The software version being used for the sounding 0: P: (DLM WND 28536 012359) The avg wnd over the depth of sndg Last grp is pressure layer Q: (WL150 04516 07) Avg wnd ovr the lowest available 150m of snding (07) is lyr center (8) Indicator for the use of satellite navigation for wind finding R: (8) Indicator for the use of satellite having the starting with the satellite having the starting with the starting w (04636) Temp and Humidity data, read as section one T/Td dap T: U: (21212) Data for Significant levels with respect to wind follow (00) # of Level, starting w/sfc, only sfe will be # 'd as 00 (012) Press in whole mb V: W: (04516) True wind direction and speed; read the same way as G (31313) Data on sounding system X : (096) Should always be encoded as such (08) Tracking techniques: 00 = AC has no wind Y: finding capability and 08 = Automatic Satellite navigation

(8) Indicator for time of OB (2209) Actual time of drop launch in hour and minutes 22:

APPENDIX B – D FILE COMPONENTS

AVAPS-T01	STA	111745195	120825	055625.41															
AVAPS-T01	COM		UTC	UTC	Air	Air	Rel	Wind	Wind	Vert	GPS	GPS	Geopot	en GP	S Sor	nde So	nde G	PS Win	nd GPS
AVAPS-T01	COM	Sonde	Date	Time	Press	Temp	Humid	Dir	Spd	Veloc	Longitude	Latitude	Altitude	Wnd	RH1	RH2	Snd	Error	Altitude
AVAPS-T01	COM	ID	yymmdd	hhmmss.ss	(mb)	(degC)	(%)	(deg)	(m/s)	(m/s)	(deg)	(deg)	(m)	Sat	(%)	(%) Sa	t (m/s	s) (m)
AVAPS-T01	COM																		
AVAPS-T01	LAU	111745195	120825	060157.25															
AVAPS-D01	A00	111745195	120825	060157.00	179.01	-59.11	40.37	222.01	25.95	0.40	-79.508200	27.113400	13070.80	0	40.37	40.37	0	0.00	13109.80
AVAPS-D01	POO	111745195	120825	060147.25	<mark>806.18</mark>	<mark>17.78</mark>	<mark>11.87</mark>	280.08	237.73	-0.10	-79.529817	27.117149	99999.00	9	10.96	11.87	9	0.51	13076.22
AVAPS-D01	P10	111745195	120825	060147.50	9999.00	99.00	999.00	280.12	237.63	-0.08	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.52	99999.00
AVAPS-D01	POO	111745195	120825	060147.75	<mark>806.15</mark>	17.75	11.89	280.17	237.62	-0.09	-79.528640	27.116961	99999.00	9	10.95	11.89	9	0.52	13076.24
AVAPS-D01	P10	111745195	120825	060148.00	9999.00	99.00	999.00	280.23	237.70	-0.14	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.52	99999.00
AVAPS-D01	POO	111745195	120825	060148.25	<mark>806.15</mark>	17.76	11.90	280.28	237.68	-0.17	-79.527463	27.116771	99999.00	9	10.97	11.90	9	0.52	13076.24
AVAPS-D01	P10	111745195	120825	060148.50	9999.00	99.00	999.00	280.32	237.68	-0.17	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.52	99999.00
AVAPS-D01	P00	111745195	120825	060148.75	<mark>806.18</mark>	17.74	11.91	280.36	237.67	-0.13	-79.526287	27.116579	99999.00	9	10.96	11.91	9	0.50	13076.24
AVAPS-D01	P10	111745195	120825	060149.00	9999.00	99.00	999.00	280.45	237.70	-0.26	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.48	99999.00
AVAPS-D01	P00	111745195	120825	060149.25	806.15	17.75	11.88	280.45	237.66	-0.20	-79.525111	27.116386	99999.00	9	10.98	11.88	9	0.48	13076.28
AVAPS-D01	P10	111745195	120825	060149.50	9999.00	99.00	999.00	280.50	237.73	-0.11	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.49	99999.00
AVAPS-D01	POO	111745195	120825	060149.75	<mark>806.23</mark>	17.76	11.94	280.53	237.66	-0.05	-79.523935	27.116191	99999.00	9	10.98	11.94	9	0.56	13076.28
AVAPS-D01	P10	111745195	120825	060150.00	9999.00	99.00	999.00	280.60	237.61	-0.04	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.50	99999.00
AVAPS-D01	P00	111745195	120825	060150.25	806.26	17.75	11.90	280.67	237.68	-0.06	-79.522760	27.115994	99999.00	9	11.00	11.90	9	0.48	13076.29
AVAPS-D01	P10	111745195	120825	060150.50	9999.00	99.00	999.00	280.70	237.71	-0.04	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.50	99999.00
AVAPS-D01	POO	111745195	120825	060150.75	806.27	17.75	11.87	280.74	237.64	-0.00	-79.521585	27.115795	99999.00	9	10.96	11.87	9	0.50	13076.30
AVAPS-D01	P10	111745195	120825	060151.00	9999.00	99.00	999.00	280.80	237.62	0.01	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.54	99999.00
AVAPS-D01	POO	111745195	120825	060151.25	<mark>806.11</mark>	17.74	11.88	280.83	237.65	0.14	-79.520410	27.115595	99999.00	9	10.95	11.88	9	0.58	13076.53
AVAPS-D01	P10	111745195	120825	060151.50	9999.00	99.00	999.00	280.87	237.62	0.24	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.54	99999.00
AVAPS-D01	P00	111745195	120825	060151.75	806.04	17.75	11.89	280.93	237.56	0.26	-79.519236	27,115393	99999.00	9	10.97	11.89	9	0.51	13076.71

Figure B1: First rows of a D File including Launch Detect (LAU), Aircraft Data (A00) and the first few seconds of data recorded while the sonde was still in the launch tube (P00 and P10 rows)

Time on top line (highlighted in yellow as 055625.41 UTC in HHMMSS format with hundredths of seconds following the decimal point) IS NOT the time of the launch detect. It is the time when the AVAPS operator initializes the sonde and begins testing and prepping it for release (usually about 5 minutes prior to launch).

Launch Detect time is shown on the LAU line highlighted in green (in this case 060157.25 UTC). A bright LED light is located on the opposite side of the open inner cylinder from a light sensor on one end of the sonde. The parachute is stuffed between the light and the sensor. Upon deployment, the parachute unfurls into the air stream and leaves the open end of the sonde, allowing the LED light to shine into the sensor and activate the launch detect signal. This LAU time is used as the stamp naming the D File.

The A00 line (highlighted in magenta) is populated with aircraft data from 0.25 seconds prior to the launch detect. The next line (labeled P00 in the second column) is the first of 10 seconds of data from the sonde while it was still in the launch tube inside the aircraft prior to deployment. Note that it is showing the typical cabin pressure (806.18 mb), temperature (17.78C) and RH (11.87%) for the G-IV.

All the rows that are labeled with a P in that 2nd column display sonde data from the cabin. AVAPS is set to display the 10 seconds of sonde data before launch detect (that is why the times jump back 10 seconds for the first row labeled with P. Expect to see the label alternate between P00 and P10. The 1 in the first digit after the P denotes an error flag in the PTH data. This is expected in every other line since PTH data is only populated every 0.5 seconds (so since a line is generated every 0.25 seconds, half of them will be missing PTH data and filled with 999s for those columns). The second digit after the P is an error flag for GPS data. When GPS data for a row is flagged as invalid this will display a 1. In Figure B1, there were no rows with invalid GPS data while the sonde was in the launch tube.

Each dropsonde has a unique Sonde ID (shown in the third column) assigned by the manufacturer.

There are two humidity sensors on each sonde, therefore, there are two columns (#16 and #17) for both values of RH calculated by the AVAPS system (RH1 and RH2).

Geopotential Altitude (column #14) is provided by AAMPS in the A00 line. Afterwards, it is calculated by AVAPS using the hydrostatic equation based on this initial aircraft platform reference and subsequent changes in pressure and virtual temperature as determined by the sonde. This results in a raw estimate of Geopotential Altitude (GA) since the calculation is made from the top down. Later, when the D File is processed by ASPEN, a separate, more accurate integration of GA is performed from the bottom of the sounding upward. There is no calculation for GA in the P lines with the sonde in the launch tube.

Changes in Geopotential Altitude as the sonde falls is used to calculate Vertical Velocity in column #11. The GPS Altitude (the final column on the right) is not used for either GA or Vertical velocity calculations.

The GPS calculation of latitude, longitude, wind direction and wind speed on the A00 line (derived by the aircraft's AAMPS data system) are entirely independent of the corresponding calculation made on subsequent lines of the D File by the sonde and the AVAPS system. Note there are slight differences in each of these parameters between the A00 line and the 10 seconds of data in the P lines awaiting launch. The number of satellites being used for GPS calculations by AVAPS is shown in column #15.

			UTC	UTC	Air	Air	Rel	Wind	Wind	Vert	GPS	GPS	Geopot	en GPS	Sond	e Son	de GPS	Win	d GPS
		TD .	Date	Time	(mb)	(degC)	Humid	Dir (deg)	Spd (m(a)	Veloc (m/e)	Longitude	Latitude (deg)	Altitude (m)	Sat	RH1 (R)	RHZ (R)	Snd Er	ror (m/a	Altitude (m)
	-				(110-)			(deg)	(111/ 3)	(111/ 5)	(deg)	(deg)	(111)					(114) 3	
AVAPS-D01	POO	111745195	120825	060155.25	806.19	17.74	<mark>11.83</mark>	281.64	237.39	0.63	-79.511031	27.113922	99999.00	9	10.89	11.83	9	0.50	13077.81
AVAPS-D01	P10	111745195	120825	060155.50	9999.00	99.00	999.00	281.65	237.39	0.69	999.000000	99.00000	99999.00	9.9	99.00	999.00	9	0.49	99999.00
AVAPS-D01	POO	111745195	120825	060155.75	806.07	17.73	<mark>11.82</mark>	281.70	237.39	0.79	-79.509860	27.113706	99999.00	9	10.90	11.82	9	0.49	13078.21
AVAPS-D01	P10	111745195	120825	060156.00	9999.00	99.00	999.00	281.75	237.33	0.78	999.000000	99.00000	99999.00	9 9	99.00	999.00	9	0.49	99999.00
AVAPS-D01	POO	111745195	120825	060156.25	806.22	17.73	<mark>11.81</mark>	281.81	237.31	0.72	-79.508691	27.113487	99999.00	9	10.90	11.81	9	0.47	13078.53
AVAPS-D01	P10	111745195	120825	060156.50	9999.00	99.00	999.00	281.85	237.29	0.64	999.000000	99.00000	99999.00	9 9	99.00	999.00	9	0.47	99999.00
AVAPS-D01	P01	111745195	120825	060156.75	806.14	17.73	<mark>11.79</mark>	999.00	999.00	99.00	999.000000	99.00000	99999.00	0	10.89	11.79	0 9	9.00	99999.00
AVAPS-D01	P11	111745195	120825	060157.00	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0 9	9.00	99999.00
AVAPS-D01	S00	111745195	120825	060157.25	152.04	17.72	<mark>11.60</mark>	281.96	237.38	0.64	-79.506353	27.113046	99999.00	9	9.52	11.60	9	0.63	13079.11
AVAPS-D01	S10	111745195	120825	060157.50	9999.00	99.00	999.00	282.13	237.15	0.72	999.000000	99.00000	99999.00	9 9	99.00	999.00	9	0.82	99999.00
AVAPS-D01	S11	111745195	120825	060157.75	128.01	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000	99999.00	0 9	99.00	999.00	0 9	9.00	99999.00
AVAPS-D01	S11	111745195	120825	060158.00	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000	99999.00	6 9	99.00	999.00	69	9.00	99999.00
AVAPS-D01	S11	111745195	120825	060158.25	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0 9	9.00	99999.00
AVAPS-D01	S11	111745195	120825	060158.50	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0 9	9.00	99999.00
AVAPS-D01	S11	111745195	120825	060158.75	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000	99999.00	0 9	99.00	999.00	0 9	9.00	99999.00
AVAPS-D01	S00	111745195	120825	060159.00	<mark>180.62</mark>	-9.01	1.00	280.73	228.59	2.49	-79.502361	27.112279	99999.00	6	1.00	1.00	6	2.34	13082.16
AVAPS-D01	S10	111745195	120825	060159.25	9999.00	99.00	999.00	280.23	228.31	3.08	999.000000	99.00000	99999.00	5 9	99.00	999.00	5	2.49	99999.00
AVAPS-D01	S00	111745195	120825	060159.50	<mark>180.93</mark>	<mark>-12.07</mark>	1.00	280.10	228.06	3.46	-79.501231	27.112105	99999.00	5	1.00	1.00	5	2.58	13085.00
AVAPS-D01	S10	111745195	120825	060159.75	9999.00	99.00	999.00	279.46	227.37	3.55	999.000000	99.000000	99999.00	4 9	99.00	999.00	4	2.93	99999.00
AVAPS-D01	S00	111745195	120825	060200.00	<mark>181.16</mark>	5 <mark>-14.32</mark>	1.00	999.00	999.00	99.00	999.000000	99.000000	99999.00	0	1.00	1.00	0 9	9.00	99999.00
AVAPS-D01	S10	111745195	120825	060200.25	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0 9	9.00	99999.00
AVAPS-D01	S00	111745195	120825	060200.50	181.80) <mark>-16.27</mark>	1.00	999.00	999.00	99.00	999.000000	99.00000	12979.33	0	1.00	1.00	0 9	9.00	99999.00
AVAPS-D01	S10	111745195	120825	060200.75	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000	99999.00	0 9	99.00	999.00	0 9	9.00	99999.00
AVAPS-D01	S00	111745195	120825	060201.00	<mark>181.98</mark>	<mark>-18.26</mark>	1.00	999.00	999.00	99.00	999.000000	99.000000	12971.81	0	1.00	1.00	0 9	9.00	99999.00
AVAPS-D01	S10	111745195	120825	060201.25	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0 9	9.00	99999.00
AVAPS-D01	S00	111745195	120825	060201.50	182.28	20.28	1.00	999.00	999.00	99.00	999.000000	99.00000	12959.84	0	1.00	1.00	0 9	9.00	99999.00
AVAPS-D01	S10	111745195	120825	060201.75	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0 9	9.00	99999.00
AVAPS-D01	S00	111745195	120825	060202.00	<mark>182.51</mark>	-22.33	1.00	999.00	999.00	99.00	999.000000	99.000000	12950.52	0	1.00	1.00	0 9	9.00	99999.00
AVAPS-D01	S10	111745195	120825	060202.25	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0 9	9.00	99999.00
AVAPS-D01	S00	111745195	120825	060202.50	<mark>182.85</mark>	-24.32	1.00	999.00	999.00	99.00	999.000000	99.00000	12936.85	0	1.00	1.00	0 9	9.00	99999.00
AVAPS-D01	S10	111745195	120825	060202.75	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000	99999.00	0 9	99.00	999.00	0 9	9.00	99999.00
AVAPS-D01	S00	111745195	120825	060203.00	<mark>183.16</mark>	-26.23	1.00	999.00	999.00	99.00	999.000000	99.00000	12924.23	0	1.00	1.00	0 9	9.00	99999.00
AVAPS-D01	S10	111745195	120825	060203.25	9999.00	99.00	999.00	224.81	27.82	-19.30	999.000000	99.00000	99999.00	7 9	99.00	999.00	7	1.01	99999.00
AVAPS-D01	S00	111745195	120825	060203.50	183.37	-28.09	1.00	225.25	29.42	-19.77	-79.501912	27.112779	12916.09	8	1.00	1.00	8	0.85	13040.64
AVAPS-D01	S10	111745195	120825	060203.75	9999.00	99.00	999.00	225.64	29.23	-19.99	999.000000	99.00000	99999.00	7 9	99.00	999.00	7	0.92	99999.00
AVAPS-D01	S00	111745195	120825	060204.00	183.75	-29.90	1.00	225.73	28.94	-21.14	-79.502375	27.113290	12901.18	8	1.00	1.00	8	0.71	13013.68
AVAPS-D01	S10	111745195	120825	060204.25	9999.00	99.00	999.00	224.90	28.17	-21.73	999.00000	99.00000	99999.00	7 9	99.00	999.00	7	0.59	99999.00

Figure B2: The first line of actual sonde data from outside the aircraft after launch is highlighted in magenta. The label in column #2 switches from P to S.

In Figure B2 above, the transition from sonde data recorded inside the aircraft to outside the aircraft is marked by column #2 switching from P11 to S00. The same convention applies to these S rows with a 1 in the first digit after the S denoting an error flag in PTH data and a 1 in the second digit denoting an error flag in GPS data. After launch detect, at 060157.25 UTC, the sonde pressure is momentarily erratic (reading 152.04 mb initially, and 128.01 mb a half second later). Both of these values are impossible since the aircraft's flight level pressure was 179.01 mb. Within about two seconds of

launch, the first pressures that appear reasonable at first glance (greater than the flight level pressure provided by AAMPS) appear (beginning with 180.62 mb and rising slowly thereafter as the sonde fell). However, after processing the D File with ASPEN, the first valid pressure was not calculated (using upward integration) until 31.25 seconds after launch when the first QC'd temperature was available.

Given that the flight level temperature provided by AAMPS was -59.11C, none of the temperatures shown in Figure B2 after launch are close to being valid. The first outside temperature of -9.01C is obviously far too warm. In the next several seconds the temperature is seen to quickly drop to -29.90C but is still in the process of acclimating to the drastic temperature change from inside to outside the aircraft. The Relative Humidity is also suspect in those first few seconds as it dropped from cabin values of just under 12 percent to a constant value "flat-lined" at 1 percent.

The first Geopotential Altitude calculated by AVAPS from sonde data appears 3.25 seconds after launch. However, this calculation is based on the initial aircraft reference GA followed by calculations that utilized temperatures that were far too warm. Therefore the GA value of 12,979.33 meters is highly suspect.

Not only does it take time for PTH data to stabilize, but the first few seconds of AVAPS calculated sonde winds reflect the forward motion of the G-IV. This is why the first several rows after launch show wind speeds in excess of 200 meters per second. GPS Winds tend to stabilize much more quickly than PTH data so by six seconds after launch a much more reasonable value of 27.82 m/s can be seen. The ASPEN QC filter requires a few seconds of these stabilized values before reporting the first valid wind values. To help ensure this, ASPEN filters out the first 10 seconds of winds after launch in all soundings. Therefore, while the first valid winds may not be reported until after 10 seconds they will never be reported any sooner than that.

	,	1000	10000	100000	100	12120120	0.000	222		1000	1000	1000		12	100	10. 24	2000	200
		UTC	UTC	Air	Air	Rel	Wind	Wind	Vert	GPS	GPS	Geopot	en GPS	Sonde	Son	ide GP	S Wind	d GPS
	Sonde	Date	Time	Press	Temp	Humid	Dir	Spd	Veloc	Longitude	Latitude	Altitude	Wnd I	RH1	RH2	Snd E	rror 1	Altitude
	ID	yymmdd	hhmmss.ss	(mb)	(degC)	(%)	(deg)	(m/s)	(m/s)	(deg)	(deg)	(m)	Sat	(%)	(%)	Sat	(m/s)	(m)
AVAPS-D01 S10) 111745195	120825	060224.75	9999.00	99.00	999.00	210.56	28.43	-19.15	999.000000	99.000000	99999.00	9 99	9.00 9	99.00	9	0.55	99999.00
AVAPS-D01 S00) 111745195	120825	060225.00	196.48	-54.89	3.98	210.69	28.82	-19.22	-79.499206	27.117883	12458.99	9	3.56	3.98	9	0.55	12555.72
AVAPS-D01 S10) 111745195	120825	060225.25	9999.00	99.00	999.00	210.07	28.39	-19.39	999.000000	99.000000	99999.00	8 95	9.00 9	99.00	8	0.58	99999.00
AVAPS-DO1 SOC) 111745195	120825	060225.50	196.85	-54.95	4.18	209.71	28.64	-19.60	-79.499135	27.117995	12446.94	8	3.78	4.18	8	0.56	12545.79
AVAPS-DO1 S10) 111745195	120825	060225.75	9999.00	99.00	999.00	209.91	28.77	-19.83	999.000000	99.000000	99999.00	9.95	9.00 9	99.00	9	0.57	99999.00
AVAPS-D01 S00) 111745195	120825	060226.00	197.13	-54.98	4.35	209.91	28.67	-19.85	-79.499063	27.118107	12437.80	9	3.99	4.35	9	0.55	12535.66
AVAPS-D01 S10) 111745195	120825	060226.25	9999.00	99.00	999.00	209.52	28.68	-19.96	999.000000	99.00000	99999.00	8 99	99.00 9	99.00	8	0.60	99999.00
AVAPS-D01 S00	111745195	120825	060226.50	197.45	-55.01	4.53	209.58	28.48	-20.13	-79.498993	27.118220	12427.33	8	4.15	4.53	8	0.60	12525.45
AVAPS-D01 S10) 111745195	120825	060226.75	9999.00	99.00	999.00	209.59	28.57	-20.34	999.000000	99.00000	99999.00	8 99	99.00 9	99.00	8	0.56	99999.00
AVAPS-D01 S00) 111745195	120825	060227.00	197.77	-55.04	4.74	209.65	28.55	-20.50	-79.498922	27.118332	12416.90	8	4.33	4.74	8	0.55	12515.17
AVAPS-D01 S10) 111745195	120825	060227.25	9999.00	99.00	999.00	209.74	28.55	-20.56	999.000000	99.00000	99999.00	9 99	9.00 9	99.00	9	0.57	99999.00
AVAPS-D01 S00) 111745195	120825	060227.50	198.10	-55.05	4.92	209.22	28.48	-20.57	-79.498852	27.118444	12406.47	9	4.47	4.92	9	0.57	12504.77
AVAPS-D01 S10) 111745195	120825	060227.75	9999.00	99.00	999.00	209.70	28.21	-20.76	999.000000	99.00000	99999.00	8 99	99.00 9	99.00	8	0.57	99999.00
AVAPS-D01 S00) 111745195	120825	060228.00	198.39	-55.05	5.11	209.50	28.25	-20.81	-79.498783	27.118555	12397.12	9	4.63	5.11	. 9	0.55	12494.16
AVAPS-D01 S10) 111745195	120825	060228.25	9999.00	99.00	999.00	209.48	28.48	-20.65	999.000000	99.000000	99999.00	9 99	9.00 9	99.00	9	0.55	99999.00
AVAPS-D01 S00) 111745195	120825	060228.50	198.74	-55.05	5.31	209.20	28.15	-20.79	-79.498713	27.118667	12385.63	8	4.79	5.31	8	0.57	12483.79
AVAPS-D01 S10) 111745195	120825	060228.75	9999.00	99.00	999.00	209.75	28.23	-20.90	999.000000	99.00000	99999.00	8 99	99.00 9	99.00	8	0.56	99999.00
AVAPS-D01 S00) 111745195	120825	060229.00	199.04	-55.04	5.51	209.19	28.55	-20.79	-79.498642	27.118778	12376.03	8	4.98	5.51	8	0.54	12473.43
AVAPS-D01 S10) 111745195	120825	060229.25	9999.00	99.00	999.00	209.43	28.36	-20.84	999.000000	99.00000	99999.00	8 99	99.00 9	99.00	8	0.57	99999.00
AVAPS-D01 S00) 111745195	120825	060229.50	199.32	-55.03	5.70	209.34	28.47	-20.68	-79.498572	27.118890	12367.21	9	5.14	5.70	9	0.56	12463.15
AVAPS-D01 S10) 111745195	120825	060229.75	9999.00	99.00	999.00	209.29	28.25	-20.79	999.000000	99.00000	99999.00	9 99	9.00 9	99.00	9	0.55	99999.00
AVAPS-D01 S00) 111745195	120825	060230.00	199.64	-55.02	5.91	209.73	28.03	-20.87	-79.498503	27.119001	12356.82	9	5.33	5.91	. 9	0.58	12452.81
AVAPS-D01 S10) 111745195	120825	060230.25	9999.00	99.00	999.00	209.51	28.05	-20.94	999.000000	99.00000	99999.00	8 99	9.00 9	99.00	8	0.56	99999.00
AVAPS-D01 S00) 111745195	120825	060230.50	200.01	-55.01	6.18	209.85	28.19	-20.91	-79.498433	27.119111	12345.09	8	5.62	6.18	8	0.55	12442.44
AVAPS-D01 S10) 111745195	120825	060230.75	9999.00	99.00	999.00	209.46	28.04	-20.96	999.000000	99.00000	99999.00	9.99	9.00 9	99.00	9	0.56	99999.00
AVAPS-D01 S00) 111745195	120825	060231.00	200.30	-55.00	6.46	210.01	28.32	-20.94	-79.498363	27.119222	12335.81	9	5.88	6.46	9	0.57	12432.00
AVAPS-D01 S10) 111745195	120825	060231.25	9999.00	99.00	999.00	209.81	28.37	-20.91	999.000000	99.000000	99999.00	8 99	9.00 9	99.00	8	0.56	99999.00
AVAPS-D01 S00	111745195	120825	060231.50	200.62	-54.99	6.72	209.38	28.06	-20.80	-79.498292	27.119333	12325.43	9	6.10	6.72	9	0.56	12421.68
AVAPS-D01 S10	111745195	120825	060231.75	9999.00	99.00	999.00	209.97	28.29	-20.75	999.000000	99.000000	99999.00	8 99	9.00 9	99.00	8	0.56	99999.00
AVAPS-D01 S00	111745195	120825	060232.00	200.96	-54.96	6.96	209.53	28.06	-20.67	-79.498222	27.119444	12314.78	9	6.30	6.96	9	0.56	12411.42
AVAPS-D01 S10	111745195	120825	060232.25	9999.00	99.00	999.00	209.66	27.84	-20.63	999.000000	99.000000	99999.00	9.99	9.00 9	99.00	9	0.54	99999.00
AVAPS-D01 S00	111745195	120825	060232.50	201.24	-54.94	7.25	209.41	27.61	-20.60	-79.498153	27.119553	12305.76	8	6.50	7.25	8	0.58	12401.23

Figure B3: D File data from 20 seconds further into the descent of the sonde shows where ASPEN first reported a valid pressure 31.25 seconds after launch. The temperature had stabilized at approximately -55C. The humidity was now no longer "flat-lined" at 1 percent, as it was slowly rising from about 4 percent to 7 percent. In this example, ASPEN would not report a valid humidity until 62.75 seconds, when it reached 25.1 percent.

SCISEC #.#

			UTC	UTC	Air	Air	Rel	Wind	Wind	Vert	GPS	GPS	Geopote	en GPS	Sond	e Sona	de GP	S Wind	d GPS
		Sonde	Date	Time	Press	Temp	Humid	Dir	Spd	Veloc	Longitude	Latitude	Altitude	Wnd	RH1	RH2 :	Snd E	rror 7	Altitude
		ID	yymmdd	hhmmss.ss	(mb)	(degC)	(%)	(deg)	(m/s)	(m/s)	(deg)	(deg)	(m)	Sat	(%)	(%)	Sat	(m/s)) (m)
AVAPS-D01	S 00	111745195	120825	061734.00	1006.73	28.36	76.24	67.60	6.41	-11.10	-79.525602	27.155927	51.60	9	76.05	76.24	9	0.52	80.58
AVAPS-D01	S10	111745195	120825	061734.25	9999.00	99.00	999.00	67.14	6.44	-11.27	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061734.50	1007.15	28.40	75.98	67.41	6.38	-11.17	-79.525632	27.155915	47.80	9	75.73	75.98	9	0.54	74.88
AVAPS-D01	S10	111745195	120825	061734.75	9999.00	99.00	999.00	67.46	6.37	-11.04	999.000000	99.00000	99999.00	89	99.00	999.00	8	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061735.00	1007.89	28.45	76.19	67.14	6.45	-10.96	-79.525662	27.155904	41.26	8	76.00	76.19	8	0.55	69.47
AVAPS-D01	S10	111745195	120825	061735.25	9999.00	99.00	999.00	66.54	6.48	-10.88	999.000000	99.00000	99999.00	8 9	99.00	999.00	8	0.55	99999.00
AVAPS-D01	S00	111745195	120825	061735.50	1008.37	28.49	76.03	66.41	6.44	-10.95	-79.525693	27.155892	36.99	8	75.93	76.03	8	0.54	64.07
AVAPS-D01	S10	111745195	120825	061735.75	9999.00	99.00	999.00	65.19	6.45	-10.91	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061736.00	1009.04	28.55	75.61	62.64	6.54	-11.16	-79.525722	27.155879	31.07	9	75.49	75.61	9	0.53	58.44
AVAPS-D01	S10	111745195	120825	061736.25	9999.00	99.00	999.00	65.42	6.73	-11.18	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061736.50	1009.59	28.60	74.51	64.48	6.43	-11.07	-79.525753	27.155865	26.21	8	74.29	74.51	8	0.54	52.88
AVAPS-D01	S10	111745195	120825	061736.75	9999.00	99.00	999.00	65.39	6.74	-11.02	999.000000	99.00000	99999.00	8 9	99.00	999.00	8	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061737.00	1010.38	28.66	74.62	62.23	6.65	-11.10	-79.525784	27.155852	19.19	8	74.43	74.62	8	0.55	47.40
AVAPS-D01	S10	111745195	120825	061737.25	9999.00	99.00	999.00	65.18	6.71	-11.05	999.000000	99.00000	99999.00	89	99.00	999.00	8	0.56	99999.00
AVAPS-D01	S00	111745195	120825	061737.50	1010.86	28.71	74.34	64.08	6.71	-11.07	-79.525814	27.155839	14.96	8	74.15	74.34	8	0.58	41.94
AVAPS-D01	S10	111745195	120825	061737.75	9999.00	99.00	999.00	64.70	6.42	-11.06	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.60	99999.00
AVAPS-D01	S00	111745195	120825	061738.00	1011.64	28.76	75.04	68.69	6.34	-10.91	-79.525845	27.155827	8.07	9	74.80	75.04	9	0.58	36.59
AVAPS-D01	S10	111745195	120825	061738.25	9999.00	99.00	999.00	68.62	6.59	-10.92	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061738.50	1012.05	28.82	74.71	65.84	6.41	-11.03	-79.525875	27.155816	4.49	9	74.39	74.71	9	0.54	31.25
AVAPS-D01	S10	111745195	120825	061738.75	9999.00	99.00	999.00	64.59	6.35	-10.82	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061739.00	1012.80	28.85	74.44	63.77	6.45	-10.81	-79.525905	27.155804	-2.14	9	74.17	74.44	9	0.54	25.98
AVAPS-D01	S10	111745195	120825	061739.25	9999.00	99.00	999.00	66.31	6.40	-10.79	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061739.50	1013.34	28.91	74.15	67.37	7.02	-10.80	-79.525935	27.155793	-6.88	9	73.87	74.15	9	0.58	20.72
AVAPS-D01	S10	111745195	120825	061739.75	9999.00	99.00	999.00	64.61	6.44	-10.81	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.56	99999.00
AVAPS-D01	S00	111745195	120825	061740.00	1013.91	28.96	73.93	65.45	6.53	-10.83	-79.525965	27.155781	-11.96	9	73.79	73.93	9	0.55	15.52
AVAPS-D01	S10	111745195	120825	061740.25	9999.00	99.00	999.00	66.93	6.56	-10.77	999.000000	99.00000	99999.00	9 9	99.00	999.00	9	0.53	99999.00
AVAPS-D01	S00	111745195	120825	061740.50	1014.49	29.01	74.26	65.53	6.50	-10.66	-79.525995	27.155769	-17.10	9	74.09	74.26	9	0.52	10.22
AVAPS-D01	S10	111745195	120825	061740.75	9999.00	99.00	999.00	64.76	6.53	-10.59	999.000000	99.00000	99999.00	99	99.00	999.00	9	0.52	99999.00
AVAPS-D01	S11	111745195	120825	061741.00	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000	99999.00	0.9	99.00	999.00	0	99.00	99999.00
AVAPS-D01	S11	111745195	120825	061741.25	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000	99999.00	0 9	99.00	999.00	0	99.00	99999.00
AVAPS-D01	S11	111745195	120825	061741.50	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0	99.00	99999.00
AVAPS-D01	S11	111745195	120825	061741.75	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0	99.00	99999.00
AVAPS-D01	S11	111745195	120825	061742.00	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000	99999.00	0 9	99.00	999.00	0	99.00	99999.00
AVAPS-D01	S11	111745195	120825	061742.25	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0	99.00	99999.00
AVAPS-D01	S11	111745195	120825	061742.50	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000	99999.00	0 9	99.00	999.00	0	99.00	99999.00
AVAPS-D01	S11	111745195	120825	061742.75	9999.00	99.00	999.00	999.00	999.00	99.00	999.00000	99.00000	99999.00	0 9	99.00	999.00	0	99.00	99999.00
AVAPS-D01	S11	111745195	120825	061743.00	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0	99.00	99999.00

Figure B4: D File for the bottom of a sounding just prior to splashdown. This depicts a textbook sonde termination. An entire line of PTH and GPS data (highlighted in yellow) was reported for time 061740.50 UTC with GPS only at 0.25 seconds prior to splash (highlighted in green). At splashdown there is a total loss of telemetry with 999s in all columns (highlighted in red). There will be several seconds of these rows filling out the bottom of a D File along with remarks shown in Figure B5 below.

AVAPS-D01 S11 111745195 120825 061749 25	9999 00 99 00 999 00 999	00 999 00 99 00	999 000000	00 66666 000000 66	0 999 00 999 00	0 99 00 99999 00
AVAPS-D01 S11 111745195 120825 061749 50	9999 00 99 00 999 00 999	00 999 00 99 00	999 000000	99 000000 99999 00	0 999 00 999 00	0 99 00 99999 00
AVAPS DOI 511 111745195 120825 061749 75	9999 00 99 00 999 00 999	00 999 00 99 00	999 000000	99 000000 99999 00	0 999 00 999 00	0 99 00 99999 00
AVAPS DOI SII 111745195 120025 001745.75			999 000000	99,000000, 99999,00	0 999 00 999 00	0 99 00 99999 00
AVAPS-DOI 311 111/45195 120825 061/50.00	3333.00 33.00 333.00 333		333.000000	99.000000 99999.00	0 999.00 999.00	0 99.00 99999.00
AVAPS-DUI 511 111/45195 120825 061/50.25	3333.00 33.00 333.00 333	.00 999.00 99.00	999.000000	99.000000 99999.00	0 999.00 999.00	0 99.00 99999.00
AVAPS-D01 S11 111745195 120825 061750.50	9999.00 99.00 999.00 999	0.00 999.00 99.00	999.000000	99.000000 99999.00	0 999.00 999.00	0 99.00 99999.00
AVAPS-D01 S11 111745195 120825 061750.75	9999.00 99.00 999.00 999	.00 999.00 99.00	999.000000	99.000000 99999.00	0 999.00 999.00	0 99.00 99999.00
AVAPS-T01 COM Data Type/Data Channel:	AVAPS SOUNDING DA	TA, Channel 1				
AVAPS-T01 COM Project Name/Mission ID:	Hurricane 2012, 2	0120825N1				
AVAPS-T01 COM Aircraft Type/ID:	Gulfstream G-IV S	P, N49RF				
AVAPS-T01 COM Launch Time (y,m,d,h,m,s):	2012-08-25, 06:01	:57				
AVAPS-T01 COM Sounding Name:	Drop 1					
AVAPS-T01 COM Sonde ID/Type/Rev/Built/Sen	sors: 111745195, 1, A5,	2011/07/12 07:45,	, Vaisala RS9	04, Ublox TIM-5H		
AVAPS-T01 COM Sonde Freq/Batt/Firmware/Sh	utoff: 405.70 MHz, 8.3	v, 1.02, 32	2768 sec,			
AVAPS-T01 COM Sonde Baseline Errors (p,t,	h1,h2): 0.0 mb, 0.0	C, 0.0 %,	0.0 %			
AVAPS-T01 COM Sonde Dynamic Errors (p,t,	h): -0.4 mb, 0.0	C, 0.0%				
AVAPS-T01 COM Pre-launch Obs Data System/	Time: IWGADTS Format (I	WG1), 06:01:57				
AVAPS-T01 COM Pre-launch Obs (p,t,d,h):	179.0 mb, -59.1	C, -66.0 C, 4	40.4 %			
AVAPS-T01 COM Pre-launch Obs (wd,ws):	222.0 deg, 25.9	m/s				
AVAPS-T01 COM Pre-launch Obs (lon, lat, alt): -79.508200 deg,	27.113400 deg, 13	3070.8 m, (07	9 30.4920'W, 27 06	5.8040'N)	
AVAPS-T01 COM Operator Name/Comments:	JAS, none					
AVAPS-T01 COM Standard Comments:	Good Drop					
AVAPS-T01 VER 3.5.0	SOFTWARE VERSION	3.5.0 - 2012-05-04	4; ADDS:			
AVAPS-T01 FMT NOAA 1.7	FORMAT VERSION NO	AA 1.7 - 2010 APR	17; ADDS: 0.	25 SECOND WINDS		
AVAPS-T01 TOF 0.00	Met/Wind Offset:	ptu data leads wir	nd data by 0	.00 sec		
NUNDE-TO1 END 111745195 120025 061054 55			-			

Figure B5: Following the last lines of post-splashdown 999s there is a section for remarks by the AVAPS Operator.

ADDITIONAL NOTES REGARDING D FILES:

		Sonda	UTC	UTC	Air	Air	Rel	Wind	Wind	Vert	GPS	GPS	Geopot	en GP	S Son	de Son	de Gl	PS Wir	nd GPS
		ID	yymmdd	hhmmss.ss	(mb)	(degC)	(%)	(deg)	(m/s)	(m/s)	(deg)	(deg)	(m)	Sat	(%)	(%)	Sat	t (m/s	s) (m)
AVAPS-D01	S00	111745195	120825	061732.50	1004.81	28.19	76.77	73.17	6.81	-10.68	-79.525511	27.155960	68.59	9	76.55	76.77	9	0.48	97.20
AVAPS-D01	S10	111745195	120825	061732.75	9999.00	99.00	999.00	67.10	6.55	-11.01	999.000000	99.000000	99999.00	9 9	99.00	999.00	9	0.48	99999.00
AVAPS-D01	S00	111745195	120825	061733.00	1005.42	28.24	76.62	69.00	6.62	-10.82	-79.525542	27.155949	63.20	9	76.43	76.62	9	0.49	91.84
AVAPS-D01	S10	111745195	120825	061733.25	9999.00	99.00	999.00	67.39	6.30	-10.79	999.000000	99.000000	99999.00	9.9	99.00	999.00	9	0.50	99999.00
AVAPS-D01	S00	111745195	120825	061733.50	1006.12	28.30	75.95	67.94	6.56	-10.91	-79.525573	27.155938	56.96	9 '	75.89	75.95	9	0.52	86.40
AVAPS-D01	S10	111745195	120825	061733.75	9999.00	99.00	999.00	71.02	5.87	-11.00	999.000000	99.000000	99999.00	9.9	99.00	999.00	9	0.52	99999.00
AVAPS-D01	S00	111745195	120825	061734.00	1006.73	28.36	76.24	67.60	6.41	-11.10	-79.525602	27.155927	51.60	9 '	76.05	76.24	9	0.52	80.58
AVAPS-D01	S10	111745195	120825	061734.25	9999.00	99.00	999.00	67.14	6.44	-11.27	999.000000	99.000000	99999.00	9.9	99.00	999.00	9	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061734.50	1007.15	28.40	75.98	67.41	6.38	-11.17	-79.525632	27.155915	47.80	9 '	75.73	75.98	9	0.54	74.88
AVAPS-D01	S10	111745195	120825	061734.75	9999.00	99.00	999.00	67.46	6.37	-11.04	999.000000	99.00000	99999.00	8 9	99.00	999.00	8	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061735.00	1007.89	28.45	76.19	67.14	6.45	-10.96	-79.525662	27.155904	41.26	8 '	76.00	76.19	8	0.55	69.47
AVAPS-D01	S10	111745195	120825	061735.25	9999.00	99.00	999.00	66.54	6.48	-10.88	999.000000	99.000000	99999.00	8 9	99.00	999.00	8	0.55	99999.00
AVAPS-D01	S00	111745195	120825	061735.50	1008.37	28.49	76.03	66.41	6.44	-10.95	-79.525693	27.155892	36.99	8 '	75.93	76.03	8	0.54	64.07
AVAPS-D01	S10	111745195	120825	061735.75	9999.00	99.00	999.00	65.19	6.45	-10.91	999.000000	99.00000	99999.00	9.9	99.00	999.00	9	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061736.00	1009.04	28.55	75.61	62.64	6.54	-11.16	-79.525722	27.155879	31.07	9 '	75.49	75.61	9	0.53	58.44
AVAPS-D01	S10	111745195	120825	061736.25	9999.00	99.00	999.00	65.42	6.73	-11.18	999.000000	99.000000	99999.00	9.9	99.00	999.00	9	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061736.50	1009.59	28.60	74.51	64.48	6.43	-11.07	-79.525753	27.155865	26.21	8 '	74.29	74.51	8	0.54	52.88
AVAPS-D01	S10	111745195	120825	061736.75	9999.00	99.00	999.00	65.39	6.74	-11.02	999.000000	99.00000	99999.00	8 9	99.00	999.00	8	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061737.00	1010.38	28.66	74.62	62.23	6.65	-11.10	-79.525784	27.155852	19.19	8 '	74.43	74.62	8	0.55	47.40
AVAPS-D01	S10	111745195	120825	061737.25	9999.00	99.00	999.00	65.18	6.71	-11.05	999.000000	99.000000	99999.00	8.9	99.00	999.00	8	0.56	99999.00
AVAPS-D01	S00	111745195	120825	061737.50	1010.86	28.71	74.34	64.08	6.71	-11.07	-79.525814	27.155839	14.96	8 '	74.15	74.34	8	0.58	41.94
AVAPS-D01	S10	111745195	120825	061737.75	9999.00	99.00	999.00	64.70	6.42	-11.06	999.000000	99.000000	99999.00	9 9	99.00	999.00	9	0.60	99999.00
AVAPS-D01	S00	111745195	120825	061738.00	1011.64	28.76	75.04	68.69	6.34	-10.91	-79.525845	27.155827	8.07	9 '	74.80	75.04	9	0.58	36.59
AVAPS-D01	S10	111745195	120825	061738.25	9999.00	99.00	999.00	68.62	6.59	-10.92	999.000000	99.000000	99999.00	9.9	99.00	999.00	9	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061738.50	1012.05	28.82	74.71	65.84	6.41	-11.03	-79.525875	27.155816	4.49	9 '	74.39	74.71	9	0.54	31.25
AVAPS-D01	S10	111745195	120825	061738.75	9999.00	99.00	999.00	64.59	6.35	-10.82	999.000000	99.000000	99999.00	9 9	99.00	999.00	9	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061739.00	1012.80	28.85	74.44	63.77	6.45	-10.81	-79.525905	27.155804	-2.14	9 '	74.17	74.44	9	0.54	25.98
AVAPS-D01	S10	111745195	120825	061739.25	9999.00	99.00	999.00	66.31	6.40	-10.79	999.000000	99.000000	99999.00	9.9	99.00	999.00	9	0.54	99999.00
AVAPS-D01	S00	111745195	120825	061739.50	1013.34	28.91	74.15	67.37	7.02	-10.80	-79.525935	27.155793	-6.88	9 '	73.87	74.15	9	0.58	20.72
AVAPS-D01	S10	111745195	120825	061739.75	9999.00	99.00	999.00	64.61	6.44	-10.81	999.000000	99.000000	99999.00	9.9	99.00	999.00	9	0.56	99999.00
AVAPS-D01	S00	111745195	120825	061740.00	1013.91	28.96	73.93	65.45	6.53	-10.83	-79.525965	27.155781	-11.96	9 1	73.79	73.93	9	0.55	15.52
AVAPS-D01	S10	111745195	120825	061740.25	9999.00	99.00	999.00	66.93	6.56	-10.77	999.000000	99.000000	99999.00	9.9	99.00	999.00	9	0.53	99999.00
AVAPS-D01	S00	111745195	120825	061740.50	1014.49	29.01	74.26	65.53	6.50	-10.66	-79.525995	27.155769	-17.10	9 '	74.09	74.26	9	0.52	10.22
AVAPS-D01	S10	111745195	120825	061740.75	9999.00	99.00	999.00	64.76	6.53	-10.59	999.000000	99.000000	99999.00	9.9	99.00	999.00	9	0.52	99999.00
AVAPS-D01	S11	111745195	120825	061741.00	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0 5	99.00	99999.00
AVAPS-D01	S11	111745195	120825	061741.25	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.00000	99999.00	0 9	99.00	999.00	0 5	99.00	99999.00
AVAPS-D01	S11	111745195	120825	061741.50	9999.00	99.00	999.00	999.00	999.00	99.00	999.000000	99.000000	99999.00	0 9	99.00	999.00	0.5	99.00	99999.00

Figure B6: There are two humidity sensors on the dropsonde (Sonde RH1 and Sonde RH2 highlighted in yellow in columns 16 and 17). The relative humidity used in column 7 (76.77% from RH2 in this example) and passed on to ASPEN is chosen from one of these two choices automatically by AVAPS. In ASPEN, using the AVAPS choice is is the default setting, but there is a function on the Main tab that allows the ASPEN user to manually choose RH1 or RH2.

The lowest Geopotential Altitude, as calculated by AVAPS using downward integration from the initial AAMPS flight level GA, is shown (-17.10 meters highlighted in magenta). When ASPEN performs its integration from the surface upward, the final quality controlled surface GA is always set to zero.

Column 19 (the second to the last column from left to right) is GPS Wind Error. In this example (highlighted in blue as 0.48 meters per second) the value hovers near a half meter per second. This is the typical +/- variance in the accuracy of GPS Wind Velocity provided there are a large number of satellites available for signal triangulation. The number of satellites used by the AVAPS system and the sonde for these calculations are shown in columns 15 and 18 and also highlighted in blue.

The final column on the right is GPS Altitude as calculated by AVAPS. The final value shown prior to splash (10.22 meters highlighted in green in this example) will be close to zero but will vary unpredictably (sometimes splashing with negative values). This variable is not used for any calculations by ASPEN and should only be considered as a ballpark reference for altitude.