U.S. DEPT. COMM./NORR/DAO - DATA SECTION WORK FORM NO.1 DROWF1 FILE FLT 10: 960627 H FM: RKF TO: BKF 1 FLT NO: 96-030 BLK IN: 0022 ATA: 00 17 ETD: 205 BLK DUT: 1954 ATD: 2004 ÊTE: 027 BLK TIME: 4.5 FLT TIME: SPONSOR ORG: NO AA PROGRAM: STERAO PURPOSE: 02 2.96 ORD PERSONNEL KENNEDY ~ RC SYS ENG ROLES ---CP KENUL L DATA SYS MCMILLAN KOZAK NAV RADAR FE WADEL BT/ODW RADID CLD PHYS WHITE/CZYZYK FD DOPPLER PARTICIPATING SCIENTIST/VISITORS/0A0 LAST, FIRST MAME ACTIVITY ON A/C AFFILIATION HUBLER, 6- / HOLLOWA, J NOAA/A TRET AUCTRES WERT, B NCXR NCAU MATEJKA, T/BARTEO NSS NSSC SHEPIDAN, P/KWTER, U CIRES BUITR, M/WILLAMS CIRES AC ANGEL, S WX CH / PHOTO PROPOSED/ACTUAL MISSION/REMARKS (RECCO, FIXES, STORM, PENET, NHOP #) 30.03 \$ 1016.5 uncour 230 40 57" 39,5% TOPS NINE Anvil 103 45 39,5% TOPS NINE Anvil 60 dB · 17h 59

| S | т | E | R | Α | 0 | 0 | 96 | 5 |
|---|---|---|---|---|---|---|----|---|
|   |   |   |   |   |   |   |    |   |

#### FLIGHT #4 H960627

| TYPE OF DATA           | SENSOR OR OPTION   |
|------------------------|--------------------|
|                        |                    |
| INE                    | 1                  |
| Accelerometer          | ī                  |
| Temperature probe      | 1                  |
| Altitude change option | PA                 |
| (for vertical winds)   |                    |
| Static pressure        | Rosemount fuselage |
| Dynamic pressure       | Rosemount fuselage |
| Time source            | Micro 99           |
| Constants file         | CO2963.CON         |

#### Notes:

There were four time/data gaps: 2021:49 2021:50 2229:28 2229:30

The aircraft INE positions were renavigated with respect to GPS.

SPECIAL NOTE!!! Locations 80, 81 and 82 of record five on the standard tape contain vertical ground, vertical air and vertical speeds, respectively, computed using Dave Jorgensen's vertical wind algorithm. It is recommended that these values be used for vertical wind analysis.

Flight Meteorologist: Sean White: (813) 828-3310 ext. 3072

TITLE (MAX 21 CHARACTERS) -- EX HURRICANE PAINE STERAO FLIGHT 4 YYMMDDL FLT I.D. 960627H HHMMSS START TIME -99999 DEFAULT TO START OF DATA FOR PRINTOUT ONLY 200001 HHMMSS END TIME 999999 DEFAULT TO END OF DATA FOR PRINTOUT ONLY 002000 HHMMSS TAKE OFF TIME 200400 \* NUMBER OF TAPES (12) ... FOR STANDARD TAPE OUTPUT ONLY \* -----LOGICAL UNIT OF INPUT DATA (I1) 5, 8 OR 9 FOR TAPE DRIVE 9 \* -----LOGICAL UNIT OF OUTPUT TAPE DRIVE (I1) [FOR STANDARD TAPE ONLY] 9 \* -----LOGICAL UNIT OF PRINTER (11) 6 \* -----DATE OF PROGRAM (MMDDY) 06094 \* -----STATIC PRESSURE PROBE (11) \* 1 = PSW (WINGTIP) \* 2 = PSF (CO-PILOT/FUSELAGE) \* 3 = FUTURE USE 2 \* -----DYNAMIC PRESSURE PROBE (11) \* 0 = PQW(WINGTIP) \* 1 = PQF1 (FUSELAGE 1281) \* 2 = PQF2 (FUSELAGE 1221) \* 3 =FUTURE US 1 \* -----INE SELECTION (I1) \* 1 = INE 1\* 2 = INE 21 \* -----ACCELEROMETER (I1) - USUALLY THE SAME AS YOUR INE SELECTION 1 \* ----- TOTAL TEMPERATURE PROBE (I1) [1 OR 2] 1 \* ----- DEWPONT TEMPERATURE PROBE (I1) [1 OR 2] 1 \* -----ALTIMETER OPTION (I1) - FOR VERTICAL WIND COMPUTATION \* 0 = PRESSURE ALTITUDE (OVER LAND) \* 1 = RADAR ALTITUDE APN-159 (OVER WATER) \* 2 = RADAR ALTITUDE APN-232 (OVER WATER) 0 \* -----PRINTOUT RATE SECONDS (12) 10 \* -----WINDSPEED/DIRECTION RUNNING AVERAGE TIME, SECONDS (12) 10 ! FOR STANDARD TAPE OUTPUT ONLY \* -----TIME OPTION (I1) \* 1 = MICRO 29\* 2 = TIME BASED GENERATOR #1 \* 3 = TIME BASED GENEATOR #2 1 \* -----NAME OF CONSTANTS FILE EX CO3863.CON CO2963.CON 

| GI                           | ()()        | 7 1  |  | START | 200001 |
|------------------------------|-------------|------|--|-------|--------|
| 16                           | 062         | 7 17 |  | END   | 002000 |
| BAB OL                       | ocks        |      |  |       |        |
| :16 0£                       | 49          |      |  |       |        |
| 55 53 ;                      | (1952) •• ( |      |  |       |        |
| i -                          | 30          |      |  |       |        |
| INE1                         | w/ GP       | 2    |  |       | r.     |
| 210000                       | +0.5        | +0.2 |  |       |        |
| 770000                       | +0,5        |      |  |       |        |
| 230000                       |             | +0.2 |  |       |        |
| 600000                       | +1.8        | -0.1 |  |       |        |
| <del>010000</del><br>00 2000 | 41,6        | -0.1 |  |       |        |



| - <u>-</u>           | CA         | 1.0  | TA   | 70         | 6.110 | 1-0      | 00  | 0     |             |          | 5          | 1        | 1              | T     | 1             |
|----------------------|------------|------|------|------------|-------|----------|-----|-------|-------------|----------|------------|----------|----------------|-------|---------------|
| Time<br>2004<br>2020 |            | LU   | TA   | TD         | WŊ    | ws       | SP  | Re    | in          | am       | <u>-</u> } | 1        | <u> </u>       |       |               |
| 9090                 |            | ~    |      |            |       |          |     | istan | Fr          | el lor   |            | ing      |                | aneti | 500           |
| 21.22                |            |      | e    |            |       |          |     | tin   | ish         | Con      | 5 FT       | inc      | nn             | 305/  | 27            |
| 200                  |            |      | -    |            | tot.  |          |     |       |             |          | 1          |          |                |       |               |
| 2143                 | <u>a</u> e | MIFC | - Sy | <b>9</b>   |       | <u> </u> | nte | r cur | mpa         | ve.      | Sk         | 1203     | 4h             | upan  |               |
| 2340                 |            |      |      |            |       |          |     | 200   | lost        | Far      | Freq       | 4 in     | tauce          |       | در            |
|                      |            | a. 8 |      |            |       |          |     |       | 10          |          | 30.00      |          | reva           | apav  | <u> </u>      |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            |          | <u> </u>       |       |               |
|                      |            |      |      |            |       |          | 4   |       |             |          | 1          |          |                |       |               |
|                      | . <u></u>  |      |      |            |       |          | ļ.  |       |             |          |            | 1        |                |       | •             |
|                      |            |      | 5    |            |       |          |     |       |             |          |            | <u> </u> | <u>.</u>       |       | ,             |
|                      |            |      |      |            |       |          |     |       |             | -        |            |          | 1              |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            | Ī        | ;              |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            | 1        |                |       |               |
|                      |            |      |      |            |       |          |     |       |             | -        | <u> </u>   |          |                |       |               |
|                      |            |      |      |            |       | 1        |     |       |             |          | 1          | !        | <u>;</u>       | •     | 1             |
|                      |            |      |      |            |       |          |     |       |             |          |            |          | +              | 1     |               |
|                      |            |      |      |            |       |          |     |       |             |          | <u> </u>   | s.<br>1  |                |       |               |
|                      |            |      |      |            |       |          |     |       | - 11.75     | 0        |            | 6<br>    |                |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            | 1        |                |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                | 1.    |               |
|                      |            |      |      |            |       |          |     |       | <del></del> |          |            | <u>.</u> |                | 1     |               |
|                      |            |      |      |            |       |          |     |       |             |          |            | 1        |                | :     | •             |
|                      |            |      |      |            |       |          |     |       |             |          |            |          | ·              |       | •             |
|                      |            |      |      |            |       |          |     |       |             |          |            |          | ·              |       | ·             |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       | 2             |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       | <del></del> . |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       | ,             |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
| e                    |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
|                      |            |      |      |            |       |          | 2   |       |             |          | - Co       |          |                |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
|                      |            |      |      |            |       |          |     |       |             | ·        |            |          |                |       |               |
|                      |            |      |      | ,          |       |          |     |       |             |          |            |          |                |       | ······        |
|                      |            |      |      |            |       |          |     |       |             |          |            |          | (and 10 and 11 |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
|                      |            |      |      |            |       |          |     |       |             |          |            |          |                |       |               |
|                      |            |      |      | 2-29912-2- |       |          |     |       |             | er en de |            |          |                | ·     |               |

Squall Line Scenario

Concentrate on edge of squall line closest to CHILL.

L-pattern on the southern (south-eastern) and the western side of the squall line.

- I) Radar leg: parallel to the line of storm cells at 2000 ft AGL (default) from Bsw to Bse.
  II) Radar leg: return from Bse to Bsw at 500 ft AGL (default). Max length of these legs 15 min (~90 km).
- III) Radar leg: perpendicular to the line of storms at the western edge of the squall line, Bsw to Bnw at 500 ft AGL (default). Length of this leg is determined by radar requirement.
- IV) Chemistry : Return to Bse; either directly under the storm in a direct line from Bnw to Bse or parallel to the radar legs, but in closer proximity to the active storm cells at 500 ft AGL.

Repeat this pattern II)-IV), if radar observations call for it. Adjust altitude if radio communication with CHILL require it.

V) Racetrack profile ahead of the squall line (in clear air) up to max altitude.

VI) If there is an anvil within the altitude range of the P3, descend to that altitude and attempt to approach the anvil by flying short legs (< 5 min) parallel to the line in progressively closer proximity to the storm (pilots disgression).

VII) Fly to the back side of the squall line around the storm at max altitude. Attempt again to approach the anvil region.

VIII) Racetrack profile behind the squall line.

IX) Radar and chemistry leg behind the squall line from Bne to Bnw.

If the radar indicates an anvil that is within the altitude range of the P3, attempt to transect part of the anvil if it is feasible and safe. Start these transect away from the cloud and attempt to move closer on subsequent transects.

Hydrocarbon Profile between Pt. F and Pt. G

At 15:35 head direction of Pt. G (41 00N, 104 25W)

Hydrocarbon profile between Pt. F and Pt. G at 21 kft, 17 kft, 13 kft MSL, and 1500 ft AGL

Flightplan Thunderstorm Study (Scenario 3) Colorado boundary-layer to free troposphere exchange

Doors closed: 13:50 Takeoff: 14:00 Point A, Buckley National Guard Field 39 42 N, 104 45W

Calibration at constant altitude, Observer calls Head direction of Pt. B (41 00N, 104 25W) at 15 kft MSL

Pt. A to Pt. B 150 km, ~ 19 min, (Climb < 10 min) Stay at constant altitude for calibration, observer calls Tene DEAN for dying 14:00-14:25 Convection

Before the Storm

After Calibration descend to 1500 ft AGL along the way to Pt. C

## Horizontal Survey within the PBL

Pt. B to Pt. C (40 10N, 105 00W), to Pt. D (40 10N, 103 30W), to Pt. E (40 30N, 104 10W)

# Racetrack Profile up to 21 kft near Pt. E

==> Take first set of HC can samples at 1500 ft AGL, 13 kft, 17 kft, 21 kft MSL head east for 1 min 50 sec and climb at 1500 ft/min, reverse direction, head west for 1 min 50 sec, and 15:10-15:20

Head direction of Pt. F (40 10N, 104 25W) Pt. E to Pt. F 60 km, 9 min 15:20-15:30

Super Cell Scenario

IF during any part of the flight Operation Center identifies an isolated storm, fly U-Pattern (S, W, N sides) around the storm at max altitude, 21 kft MSL, 17 kft MSL, 13 kft MSL, and 1500 ft AGL.

The sides of the boxes have to be long enough for the radar characterization of the wind field and the distance from the storm is determined by the requirements of the doppler radar. The exact location of the boxes at a given altitude will depend on the movement of the storm cell.

Should the time that is required to fly this pattern be too long for the anticipated flight duration, limit the number of constant altitude boxes.

This pattern should satisfy both the radar and chemistry objectives of STERAO.

Start HC-leg at : 05, :20, :35, :50 so that the HC sample will be centered along this leg. Change altitude approximately 3 min after HC sample ends (**Observer calls**) 15:35-16:35

If at any point during this leg the **Observation Center** at the CHILL Radar site should indentify a target storm, switch to the **Active Storm Phase**.

#### During the Active Storm Phase

## Characterize Airflow with Radar and Characterize In-Flow Region of Cloud

Cloud identification and flight coordinates will be given by CHILL Radar.

#### Radar Legs:

Straight lines parallel to and S to SW of the storm approximately 12 km away from the perimeter of the storm, orientation parallel to storm track at 7kft MSL (within the PBL, this should also be the inflow region of the storm)

until dissipation of storm.

| Alternatives: | I) Straight leg parallel to the storm track.                          |
|---------------|-----------------------------------------------------------------------|
| ===>          | II) Fly L-pattern (south and west side of the storm). See Squall Line |
|               | Scenario                                                              |
| ===>          | II) Repeat radar flight pattern at different altitude.                |
|               | (7kft, 16 kft, and > 22 kft MSL).                                     |

16:35-18:35

#### After Dissipation of the Storm:

Characterization of PBL after Storm Dissipation: Cross below location of the latest radar echo for 15 min (~100 km) 18:35-18:50

Characterization of Vertical Profile after Storm Dissipation

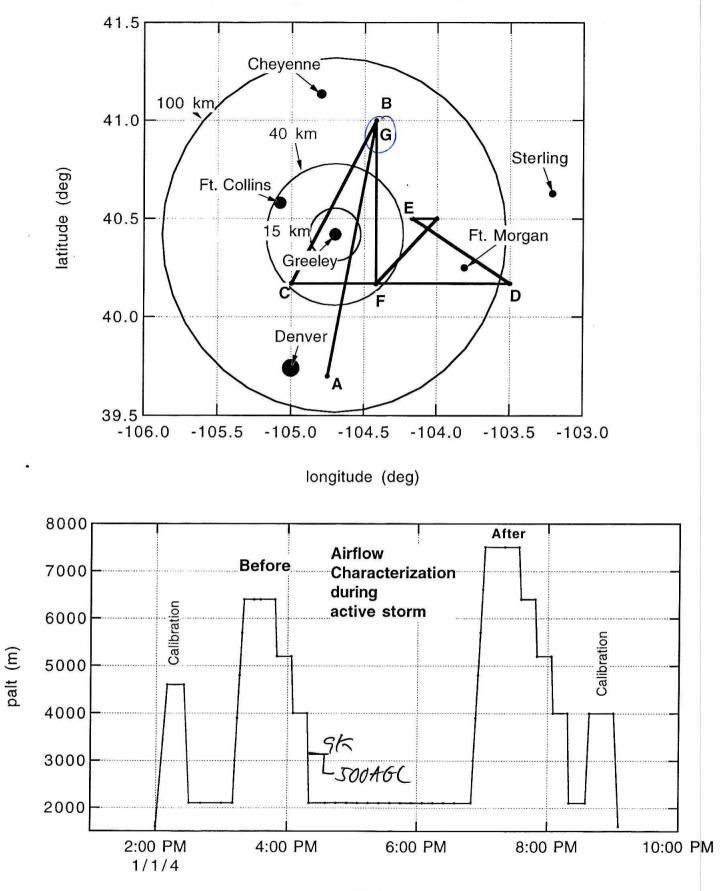
**Race track Profile** at location of the latest radar echo of the storm, descend to 500 ft AGL and then climb to max altitude at 1500 ft/min

==> Take second set of HC can samples at 1500 ft AGL, 13 kft, 17 kft, 21 kft MSL 18:50-19:20

## HC profile after the storm

North-South leg across the center of the last radar echo, the length of the HC-leg is approximately 100 km (not quite 1 deg latitude)

Hydrocarbon profile at 25 kft (or max altitude), 21 kft, 17 kft, 13 kft MSL, and 1500 ft AGL Start HC-leg at :05, :20, :35, :50 so that the HC sample will be centered along this leg. Change altitude approximately 3 min after HC sample ends (**Observer calls**) 19:20-20:35


Climb to 12 kft MSL for calibration (Start NOy calibration, and stay at altitude for calibration 20:35-20:50, Observer calls)

Head direction of Buckley (39 42N, 104 45W) Pt. A ~ 20 min

Return to Buckley at ~21:00

Pt. A(39 42N, 104 45W)Pt. B(41 00N, 104 25W)Pt. C(40 10N, 105 00W)Pt. D(40 10N, 103 30W)Pt. E(40 30N, 104 10W)Pt. F(40 10N, 104 25W)Pt. G(41 00N, 104 25W)

other points will be determined during the flight......





Alternatives:

I) 16:35-17:50: If there is no appropriate storm identified in the study area, start HC profile between Pt. F (40 10N, 104 25W), and Pt. AH (40 10N, 103 25 W) at 1500 ft AGL, 13 kft MSL, 17 kft MSL, 21 kft MSL, 25 kft MSL.

II) 17:50-19:05: start HC profile between Pt. AH (40 10N, 103 25W) and AI (41 00N, 103 25W) at 25 kft MSL, 21 kft MSL, 17 kft MSL, 13 kft MSL, 1500 ft AGL

Climb to 12 kft MSL for calibration, 30 min

Return to Buckley

The detailed characterization of the 1 deg lat by 1 deg long box will hopefully help to pick the most appropriate orientation for the HC profiles for subsequent flights. It also allows to fall back into the thunderstorm mode at any time if appropriate storms should develop later on.

| EMERGENCY MESSAGE<br>TRANSMIT THE FOLLOWING MESSAGE TO ANY AGENCY ON THE ATR-GROUND<br>FREQUENCY IN USE. IF UNABLE TO ESTABLISH COMMS, ATTEMPT CONTACT ON<br>ANY OF THE FOLLOWING EMERGENCY FREQUENCIES:<br>UHF/VOICE VHF/VOICE HF/CW MF/CW<br>243.0 121.5 2182 KHZ 8364 KHZ 500 KHZ<br>243.0 121.5 2182 KHZ 8364 KHZ 8364 KHZ 8364 KHZ 800 KHZ<br>243.0 121.5 21.5 21.5 21.5 21.5 21.5 21.5 21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REMARKS        | Ferlo STant         | (2) (2)          | TOFF Buckley    | Low who                    |             |          | Levelor        | chochš           |                     |                 |    |                     |                          |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|------------------|-----------------|----------------------------|-------------|----------|----------------|------------------|---------------------|-----------------|----|---------------------|--------------------------|-----------------|
| ERGENC<br>MESSAGE TC<br>ABLE TO ESTA<br>MERGENCY FF<br>MERGENCY FF<br>MERGENCY<br>2182 KHZ<br>2182 K | ETA            |                     |                  |                 |                            |             |          |                |                  |                     |                 |    |                     |                          |                 |
| EMERGENCY MESS/<br>TRANSMIT THE FOLLOWING MESSAGE TO ANY AGENC<br>FREQUENCY IN USE. IF UNABLE TO ESTABLISH COMM<br>ANY OF THE FOLLOWING EMERGENCY FREQUENCIES.<br>UHF/VOICE VHF/VOICE MF/VOICE HF/CW<br>243.0 121.5 2182 KHZ 8364 KH<br>243.0 121.5 2182 KHZ 8364 KH<br>MAYDAY, MAYDAY<br>THIS IS NOAANOAANOAA<br>AMAYDAY, MAYDAY<br>MAYDAY, MAYDAY<br>THIS IS NOAANOAANOAA<br>POSITTON NOAA NOAA<br>FIGHT LEVEL OR ALTITUDE E / M<br>- MATURE OF EMIRGENCY<br>- MATURE OF EMIRGENCY<br>- ASSISTANCE DESIRED NOAA SO<br>- ASSISTANCE DESIRED NOAA SO<br>- ASSISTANCE DESIRED NOAA SO<br>- ANTIENTIONS ENDURANCE REMAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TIME           |                     |                  |                 |                            |             |          |                |                  | -                   |                 |    |                     |                          |                 |
| EMERGENCY I<br>TRANSMIT THE FOLLOWING MESSAGE TO AN<br>ANY OF THE FOLLOWING EMERGENCY FREQI<br>UNFLYOICE VHFVOICE MFVOICE H<br>243.0 121.5 2182 KHZ A<br>MAYDAY, MAYDAY MAYDAY<br>THIS IS NOAANOAAN<br>POSITIONKTS TRUE/INDICATED<br>- POSITIONKTS TRUE/INDICATED<br>- WE ARE A P-3 AIRCRAFT WITH<br>- WITHOUS OF EMERGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIST           |                     |                  |                 |                            | °х          |          |                |                  |                     |                 | *? |                     |                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NEXT           |                     |                  |                 |                            | 0           |          |                |                  |                     |                 |    |                     |                          |                 |
| A REPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAS            |                     | 2.0              |                 | L avo                      | 042         | 23       |                | -                |                     |                 |    |                     |                          |                 |
| POSITION REPORT<br>1. POSITION<br>2. TIME<br>3. ALTITUDE<br>4. NEXT POSITION<br>6. NEXT POSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALT            |                     |                  |                 | 1216                       | 7,912       | Cisau    |                |                  |                     |                 |    |                     |                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ws             |                     |                  |                 | 8                          | 2           | 2        |                |                  |                     |                 |    |                     |                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | å              |                     |                  |                 | 5                          | 181         | 2        |                |                  |                     |                 |    | 7                   |                          |                 |
| Ъ<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GS             |                     |                  |                 | 1 860                      | 229         | 7 201    |                |                  |                     |                 |    |                     |                          |                 |
| BAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRK            |                     |                  |                 |                            | 2 22        | 7 e<br>0 |                |                  |                     |                 |    | -                   |                          |                 |
| A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DR<br>+R==>    |                     |                  |                 | 6 4                        | 7           | H NV     |                |                  | 4                   |                 |    | 1                   |                          |                 |
| g<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HT 0           |                     |                  |                 | 346                        | <b>9</b> 2) | E Co     |                |                  | -                   |                 |    | - 286 9             |                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H VAR          |                     |                  |                 |                            |             |          |                |                  |                     |                 |    |                     |                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RR MH          |                     | i<br>i           | 1               | 6                          | d'D         | 0.4      |                | ታሮጎ              | -                   | a<br>F<br>F     | 1  | 1                   |                          | 1 1<br>1 1<br>1 |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ON K ERR       |                     |                  |                 | <u>リ</u> フ<br>ト 香<br>>     | ~ +         | デキッシ     |                | よう<br>まま<br>そろ   |                     |                 |    | <br> <br> <br>      |                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INS 2 POSITION | 7                   |                  |                 | 87. 2<                     | 2522        | 202      |                | 20               |                     |                 |    | 1                   |                          |                 |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | <br> <br> <br> <br> | i<br>i<br>i      |                 | 33                         | 20          | E Llos   |                | 19 3C            |                     |                 |    |                     |                          |                 |
| V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N KERR         | <br> <br> <br>      | 1                |                 | $-\alpha$<br>+t            | +           |          |                | +1               | 1                   |                 |    | <br> <br> <br> <br> | I<br>I <sup>I</sup><br>I |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INS 1 POSITION | 7 7                 |                  |                 |                            | 12150       | 20.05    |                | シンシュー            |                     |                 |    | <br> <br> <br> <br> |                          |                 |
| CLEARANCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                     |                  | 1<br>1<br>1<br> | 33                         | 110         | e e e    |                | 5<br>5<br>5<br>0 | <br> <br> <br> <br> |                 |    | <br> <br> <br> <br> |                          |                 |
| CLEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | POSITION       | July Sylun          | H<br>H<br>H<br>H |                 | 552                        | 24.32       | 22.01    |                |                  | 1<br>1<br>1<br>1    | 1 + 11 + 11 + 1 |    |                     |                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                     | <br> <br> <br>   |                 | 2<br>2<br>2<br>2<br>2<br>2 | 113         | 50 1     | <br> <br> <br> | n a              | <br> <br> <br>      |                 |    |                     |                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FIX<br>TYPE    | S'N                 |                  |                 | S                          | 89          | 5 LS     |                |                  |                     |                 |    |                     |                          |                 |
| LO LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIME           | Supp                | N<br>X           | Purch           | SUR                        | 512         | 11652    | 0017           | QUR              |                     |                 |    |                     |                          |                 |